Suppr超能文献

使用 [124I]m-碘苄胍微 PET/CT 进行肿瘤剂量学测定,用于 [131I]m-碘苄胍治疗小鼠异种移植神经母细胞瘤模型。

Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.

出版信息

Mol Imaging Biol. 2012 Dec;14(6):735-42. doi: 10.1007/s11307-012-0552-4.

Abstract

PURPOSE

[(124)I]m-iodobenzylguanidine ((124)I-mIBG) provides a quantitative tool for pretherapy tumor imaging and dosimetry when performed before [(131)I]m-iodobenzylguanidine ((131)I-mIBG) targeted radionuclide therapy of neuroblastoma. (124)I (T (1/2) = 4.2 days) has a comparable half-life to that of (131)I (T (1/2) = 8.02 days) and can be imaged by positron emission tomography (PET) for accurate quantification of the radiotracer distribution. We estimated expected radiation dose in tumors from (131)I-mIBG therapy using (124)I-mIBG microPET/CT imaging data in a murine xenograft model of neuroblastoma transduced to express high levels of the human norepinephrine transporter (hNET).

PROCEDURES

In order to enhance mIBG uptake for in vivo imaging and therapy, NB 1691-luciferase (NB1691) human neuroblastoma cells were engineered to express high levels of hNET protein by lentiviral transduction (NB1691-hNET). Both NB1691 and NB1691-hNET cells were implanted subcutaneously and into renal capsules in athymic mice. (124)I-mIBG (4.2-6.5 MBq) was administered intravenously for microPET/CT imaging at 5 time points over 95 h (0.5, 3-5, 24, 48, and 93-95 h median time points). In vivo biodistribution data in normal organs, tumors, and whole-body were collected from reconstructed PET images corrected for photon attenuation using the CT-based attenuation map. Organ and tumor dosimetry were determined for (124)I-mIBG. Dose estimates for (131)I-mIBG were made, assuming the same in vivo biodistribution as (124)I-mIBG.

RESULTS

All NB1691-hNET tumors had significant uptake and retention of (124)I-mIBG, whereas unmodified NB1691 tumors did not demonstrate quantifiable mIBG uptake in vivo, despite in vitro uptake. (124)I-mIBG with microPET/CT provided an accurate three-dimensional tool for estimating the radiation dose that would be delivered with (131)I-mIBG therapy. For example, in our model system, we estimated that the administration of (131)I-mIBG in the range of 52.8-206 MBq would deliver 20 Gy to tumors.

CONCLUSIONS

The overexpression of hNET was found to be critical for (124)I-mIBG uptake and retention in vivo. The quantitative (124)I-mIBG PET/CT is a promising new tool to predict tumor radiation doses with (131)I-mIBG therapy of neuroblastoma. This methodology may be applied to tumor dosimetry of (131)I-mIBG therapy in human subjects using (124)I-mIBG pretherapy PET/CT data.

摘要

目的

[(124)I]碘代苄胍 ((124)I-mIBG) 在神经母细胞瘤的 [(131)I]碘代苄胍 ((131)I-mIBG) 靶向放射性核素治疗前提供了一种定量的肿瘤成像和剂量测定工具。(124)I(T (1/2) = 4.2 天)的半衰期与 (131)I(T (1/2) = 8.02 天)相似,并且可以通过正电子发射断层扫描 (PET) 进行成像,以准确量化放射性示踪剂的分布。我们使用神经母细胞瘤高表达人去甲肾上腺素转运蛋白 (hNET) 的小鼠异种移植模型中的 [(124)I-mIBG]微 PET/CT 成像数据,估计了 [(131)I-mIBG]治疗的肿瘤预期辐射剂量。

程序

为了增强 mIBG 的摄取以进行体内成像和治疗,NB 1691-荧光素酶(NB1691)人神经母细胞瘤细胞通过慢病毒转导被工程改造为高表达 hNET 蛋白(NB1691-hNET)。NB1691 和 NB1691-hNET 细胞均皮下和肾囊中植入无胸腺小鼠体内。(124)I-mIBG(4.2-6.5 MBq)静脉内给药,用于 95 h 内的 5 个时间点的 microPET/CT 成像(0.5、3-5、24、48 和 93-95 h 中位数时间点)。从使用基于 CT 的衰减图校正光子衰减的重建 PET 图像中收集正常器官、肿瘤和全身的体内生物分布数据。对 (124)I-mIBG 进行器官和肿瘤剂量测定。假设与 (124)I-mIBG 相同的体内生物分布,对 (131)I-mIBG 进行剂量估算。

结果

所有 NB1691-hNET 肿瘤均明显摄取和保留 (124)I-mIBG,而未经修饰的 NB1691 肿瘤在体内未显示可量化的 mIBG 摄取,尽管在体外摄取。(124)I-mIBG 结合 microPET/CT 为估计用 (131)I-mIBG 治疗时将给予的辐射剂量提供了一种准确的三维工具。例如,在我们的模型系统中,我们估计在 52.8-206 MBq 的范围内给予 (131)I-mIBG 将向肿瘤输送 20 Gy。

结论

发现 hNET 的过表达对于体内 (124)I-mIBG 的摄取和保留至关重要。定量 (124)I-mIBG PET/CT 是一种很有前途的新工具,可用于预测神经母细胞瘤的 (131)I-mIBG 治疗的肿瘤辐射剂量。这种方法可以应用于使用 (124)I-mIBG 预处理 PET/CT 数据对人类 (131)I-mIBG 治疗的肿瘤进行剂量测定。

相似文献

5
Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG.
Clin Cancer Res. 2014 Apr 15;20(8):2182-91. doi: 10.1158/1078-0432.CCR-13-1153. Epub 2014 Feb 26.
6
Imaging a Genetically Engineered Oncolytic Vaccinia Virus (GLV-1h99) Using a Human Norepinephrine Transporter Reporter Gene.
Clin Cancer Res. 2009 Jun 1;15(11):3791-801. doi: 10.1158/1078-0432.CCR-08-3236. Epub 2009 May 26.
7
Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter.
Eur J Nucl Med Mol Imaging. 2014 Feb;41(2):322-32. doi: 10.1007/s00259-013-2558-9. Epub 2013 Oct 31.
8
A 4-methyl-substituted meta-iodobenzylguanidine analogue with prolonged retention in human neuroblastoma cells.
Eur J Nucl Med Mol Imaging. 2004 Oct;31(10):1362-70. doi: 10.1007/s00259-004-1596-8. Epub 2004 Jun 16.
10
Targeting of meta-iodobenzylguanidine to SK-N-SH human neuroblastoma xenografts: tissue distribution, metabolism and therapeutic efficacy.
Int J Cancer. 2000 Aug 1;87(3):412-22. doi: 10.1002/1097-0215(20000801)87:3<412::aid-ijc16>3.0.co;2-x.

引用本文的文献

3
Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade.
Int J Mol Sci. 2022 Apr 30;23(9):5023. doi: 10.3390/ijms23095023.
4
Diagnostic Performance of I-Metaiodobenzylguanidine PET/CT in Patients with Pheochromocytoma.
J Nucl Med. 2022 Jun;63(6):869-874. doi: 10.2967/jnumed.121.262797. Epub 2021 Sep 23.
5
Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments.
J Pers Med. 2021 Apr 4;11(4):270. doi: 10.3390/jpm11040270.
7
Ferronostics: Measuring Tumoral Ferrous Iron with PET to Predict Sensitivity to Iron-Targeted Cancer Therapies.
J Nucl Med. 2021 Jul 1;62(7):949-955. doi: 10.2967/jnumed.120.252460. Epub 2020 Nov 27.
8
I-MIBG PET/CT to Monitor Metastatic Disease in Children with Relapsed Neuroblastoma.
J Nucl Med. 2021 Jan;62(1):43-47. doi: 10.2967/jnumed.120.243139. Epub 2020 May 15.
9
Inhibition of HIF-1α by Atorvastatin During I-RTX Therapy in Burkitt's Lymphoma Model.
Cancers (Basel). 2020 May 11;12(5):1203. doi: 10.3390/cancers12051203.
10
Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals.
Nucl Med Mol Imaging. 2019 Jun;53(3):182-188. doi: 10.1007/s13139-019-00589-8. Epub 2019 Feb 18.

本文引用的文献

1
Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems.
Clin Cancer Res. 2011 Apr 15;17(8):2339-49. doi: 10.1158/1078-0432.CCR-10-2949. Epub 2011 Mar 18.
5
Neuroblastoma: biology and staging.
Curr Oncol Rep. 2009 Nov;11(6):431-8. doi: 10.1007/s11912-009-0059-6.
7
123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma.
J Nucl Med. 2009 Aug;50(8):1237-43. doi: 10.2967/jnumed.108.060467. Epub 2009 Jul 17.
8
Optimization and assessment of quantitative 124I imaging on a Philips Gemini dual GS PET/CT system.
Eur J Nucl Med Mol Imaging. 2009 Jul;36(7):1037-48. doi: 10.1007/s00259-009-1099-8. Epub 2009 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验