Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
Mol Imaging Biol. 2012 Dec;14(6):735-42. doi: 10.1007/s11307-012-0552-4.
[(124)I]m-iodobenzylguanidine ((124)I-mIBG) provides a quantitative tool for pretherapy tumor imaging and dosimetry when performed before [(131)I]m-iodobenzylguanidine ((131)I-mIBG) targeted radionuclide therapy of neuroblastoma. (124)I (T (1/2) = 4.2 days) has a comparable half-life to that of (131)I (T (1/2) = 8.02 days) and can be imaged by positron emission tomography (PET) for accurate quantification of the radiotracer distribution. We estimated expected radiation dose in tumors from (131)I-mIBG therapy using (124)I-mIBG microPET/CT imaging data in a murine xenograft model of neuroblastoma transduced to express high levels of the human norepinephrine transporter (hNET).
In order to enhance mIBG uptake for in vivo imaging and therapy, NB 1691-luciferase (NB1691) human neuroblastoma cells were engineered to express high levels of hNET protein by lentiviral transduction (NB1691-hNET). Both NB1691 and NB1691-hNET cells were implanted subcutaneously and into renal capsules in athymic mice. (124)I-mIBG (4.2-6.5 MBq) was administered intravenously for microPET/CT imaging at 5 time points over 95 h (0.5, 3-5, 24, 48, and 93-95 h median time points). In vivo biodistribution data in normal organs, tumors, and whole-body were collected from reconstructed PET images corrected for photon attenuation using the CT-based attenuation map. Organ and tumor dosimetry were determined for (124)I-mIBG. Dose estimates for (131)I-mIBG were made, assuming the same in vivo biodistribution as (124)I-mIBG.
All NB1691-hNET tumors had significant uptake and retention of (124)I-mIBG, whereas unmodified NB1691 tumors did not demonstrate quantifiable mIBG uptake in vivo, despite in vitro uptake. (124)I-mIBG with microPET/CT provided an accurate three-dimensional tool for estimating the radiation dose that would be delivered with (131)I-mIBG therapy. For example, in our model system, we estimated that the administration of (131)I-mIBG in the range of 52.8-206 MBq would deliver 20 Gy to tumors.
The overexpression of hNET was found to be critical for (124)I-mIBG uptake and retention in vivo. The quantitative (124)I-mIBG PET/CT is a promising new tool to predict tumor radiation doses with (131)I-mIBG therapy of neuroblastoma. This methodology may be applied to tumor dosimetry of (131)I-mIBG therapy in human subjects using (124)I-mIBG pretherapy PET/CT data.
[(124)I]碘代苄胍 ((124)I-mIBG) 在神经母细胞瘤的 [(131)I]碘代苄胍 ((131)I-mIBG) 靶向放射性核素治疗前提供了一种定量的肿瘤成像和剂量测定工具。(124)I(T (1/2) = 4.2 天)的半衰期与 (131)I(T (1/2) = 8.02 天)相似,并且可以通过正电子发射断层扫描 (PET) 进行成像,以准确量化放射性示踪剂的分布。我们使用神经母细胞瘤高表达人去甲肾上腺素转运蛋白 (hNET) 的小鼠异种移植模型中的 [(124)I-mIBG]微 PET/CT 成像数据,估计了 [(131)I-mIBG]治疗的肿瘤预期辐射剂量。
为了增强 mIBG 的摄取以进行体内成像和治疗,NB 1691-荧光素酶(NB1691)人神经母细胞瘤细胞通过慢病毒转导被工程改造为高表达 hNET 蛋白(NB1691-hNET)。NB1691 和 NB1691-hNET 细胞均皮下和肾囊中植入无胸腺小鼠体内。(124)I-mIBG(4.2-6.5 MBq)静脉内给药,用于 95 h 内的 5 个时间点的 microPET/CT 成像(0.5、3-5、24、48 和 93-95 h 中位数时间点)。从使用基于 CT 的衰减图校正光子衰减的重建 PET 图像中收集正常器官、肿瘤和全身的体内生物分布数据。对 (124)I-mIBG 进行器官和肿瘤剂量测定。假设与 (124)I-mIBG 相同的体内生物分布,对 (131)I-mIBG 进行剂量估算。
所有 NB1691-hNET 肿瘤均明显摄取和保留 (124)I-mIBG,而未经修饰的 NB1691 肿瘤在体内未显示可量化的 mIBG 摄取,尽管在体外摄取。(124)I-mIBG 结合 microPET/CT 为估计用 (131)I-mIBG 治疗时将给予的辐射剂量提供了一种准确的三维工具。例如,在我们的模型系统中,我们估计在 52.8-206 MBq 的范围内给予 (131)I-mIBG 将向肿瘤输送 20 Gy。
发现 hNET 的过表达对于体内 (124)I-mIBG 的摄取和保留至关重要。定量 (124)I-mIBG PET/CT 是一种很有前途的新工具,可用于预测神经母细胞瘤的 (131)I-mIBG 治疗的肿瘤辐射剂量。这种方法可以应用于使用 (124)I-mIBG 预处理 PET/CT 数据对人类 (131)I-mIBG 治疗的肿瘤进行剂量测定。