Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA.
Med Phys. 2019 May;46(5):2477-2486. doi: 10.1002/mp.13446. Epub 2019 Mar 12.
Radiation dose calculated on tumors for radiopharmaceutical therapy varies significantly from tumor to tumor and from patient to patient. Accurate estimation of radiation dose requires multiple time point measurements using radionuclide imaging modalities such as SPECT or PET. In this report, we show our technical development of reducing the number of scans needed for reasonable estimation of tumor and normal organ dose in our pretherapy imaging and dosimetry platform of I-metaiodobenzylguanidine (MIBG) positron emission tomography/computed tomography (PET/CT) for I-MIBG therapy of neuroblastoma.
We analyzed the simplest kinetic data, areas of two-time point data for five patients with neuroblastoma who underwent 3 or 4 times of I-MIBG PET/CT scan prior to I-MIBG therapy. The data for which we derived areas were percent of injected activity (%IA) and standardized uptake value of tumors. These areas were correlated with time-integrated activity coefficients (TIACs) from full data (3 or 4 time points). TIACs are direct correlates with radiation dose as long as the volume and the radionuclide are known.
The areas of %IAs between data obtained from all the two-time points with time points 1 and 2 (day 0 and day 1), time points 2 and 3 (day 1 and day 2), and time points 1 and 3 (day 0 and day 2) showed reasonable correlation (Pearson's correlation coefficient |r| > 0.5) with not only tumor and organ TIACs but also tumor and organ absorbed doses. The tumor and organ doses calculated using %IA areas of time point 1 and time point 2 were our best fits at about 20% individual percent difference compared to doses calculated using 3 or 4 time points.
We could achieve reasonable accuracy of estimating tumor doses for subsequent radiopharmaceutical therapy using only the two-time point imaging sessions. Images obtained from these time points (within the 48-h after administration of radiopharmaceutical) were also viewed as useful for diagnostic reading. Although our analysis was specific to I-MIBG PET/CT pretherapy imaging data for I-MIBG therapy of neuroblastoma and the number of imaging datasets was not large, this feasible methodology would generally be applicable to other imaging and therapeutic radionuclides with an appropriate data analysis similar to our analysis to other imaging and therapeutic radiopharmaceuticals.
放射性药物治疗的肿瘤辐射剂量在肿瘤之间和患者之间差异很大。准确估计辐射剂量需要使用放射性核素成像方式(如 SPECT 或 PET)进行多次时间点测量。在本报告中,我们展示了我们在 I-间碘苄胍(MIBG)正电子发射断层扫描/计算机断层扫描(PET/CT)前治疗成像和剂量学平台中减少合理估计肿瘤和正常器官剂量所需扫描次数的技术发展,用于神经母细胞瘤的 I-MIBG 治疗。
我们分析了 5 名神经母细胞瘤患者的最简单动力学数据,这些患者在 I-MIBG 治疗前进行了 3 或 4 次 I-MIBG PET/CT 扫描。我们推导面积的这些数据是注射活性的百分比(%IA)和肿瘤的标准化摄取值。这些区域与来自全数据(3 或 4 个时间点)的时间积分活度系数(TIAC)相关。只要体积和放射性核素已知,TIAC 就是辐射剂量的直接相关物。
在所有两个时间点(第 0 天和第 1 天)和第 1 天和第 3 天(第 1 天和第 2 天)的数据中获得的 %IA 区域之间以及在第 1 天和第 3 天(第 0 天和第 2 天)的区域之间与肿瘤和器官 TIAC 以及肿瘤和器官吸收剂量具有合理的相关性(Pearson 相关系数|r|>0.5)。与使用 3 或 4 个时间点相比,使用时间点 1 和时间点 2 的 %IA 区域计算的肿瘤和器官剂量分别为 20%左右的个体差异。
我们仅使用两个时间点的成像会话即可实现对随后放射性药物治疗的肿瘤剂量进行合理准确的估计。在给药后 48 小时内获得的这些时间点的图像(在放射性药物给药后 48 小时内)也被认为对诊断阅读有用。尽管我们的分析是针对神经母细胞瘤的 I-MIBG PET/CT 前治疗成像数据特定的,并且成像数据集的数量不大,但这种可行的方法通常适用于其他成像和治疗放射性核素,只要进行类似我们的分析,以获得其他成像和治疗放射性药物的合适数据分析。