Balduini Walter, Carloni Silvia, Buonocore Giuseppe
Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
J Matern Fetal Neonatal Med. 2012 Apr;25 Suppl 1:30-4. doi: 10.3109/14767058.2012.663176. Epub 2012 Mar 5.
Autophagy is an endogenous tightly regulated process responsible for the degradation of damaged and dysfunctional cellular organelles and protein aggregates. Emerging data indicate a strong and complex interaction among autophagy, apoptosis and necrosis. We studied these interactions in a neonatal model of hypoxia-ischemia (HI). Autophagy was assessed by evaluating the expression of the two autophagy proteins beclin 1 and LC3, and by "in vivo" autophagic vesicles formation and clearance using monodansylcadaverine (MDC). Both autophagy and apoptosis pathways were increased in the same neurons at short times after HI. Neuroprotective drugs also increased autophagy. Interestingly, pharmacological inhibition of autophagy switched cell death phenotypes from apoptosis to necrosis. Rapamycin, that enhances autophagy by inhibition of mTOR and previously shown to be neuroprotective in our animal model of HI when administered before the ischemic insult, was used to study the potential interaction between autophagy and survival pathways. Rapamycin, besides inducing autophagy, also increased Akt and CREB (cAMP response element-binding protein) phosphorylation in the same cells. The pharmacological inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt axis reduced the neuroprotective effect of rapamycin without affecting autophagy. Conversely, pharmacological inhibition of autophagy reduced the neuroprotective effect of rapamycin without affecting Akt phosphorylation. Both treatments, however, caused a rapid switch towards necrotic cell death. Thus, autophagy can be part of an integrated pro-survival signalling which includes the PI3K-Akt- mTOR axis and its activation seems be crucial for pharmacological and ischemic preconditioning.
自噬是一种内源性的严格调控过程,负责降解受损和功能失调的细胞器以及蛋白质聚集体。新出现的数据表明自噬、凋亡和坏死之间存在强烈而复杂的相互作用。我们在新生儿缺氧缺血(HI)模型中研究了这些相互作用。通过评估两种自噬蛋白beclin 1和LC3的表达,以及使用单丹磺酰尸胺(MDC)“体内”自噬囊泡的形成和清除来评估自噬。HI后短时间内,同一神经元中的自噬和凋亡途径均增加。神经保护药物也会增加自噬。有趣的是,自噬的药理学抑制将细胞死亡表型从凋亡转变为坏死。雷帕霉素通过抑制mTOR增强自噬,并且在我们的HI动物模型中,在缺血性损伤前给药时已显示具有神经保护作用,因此用于研究自噬与生存途径之间的潜在相互作用。雷帕霉素除了诱导自噬外,还增加了同一细胞中Akt和CREB(环磷酸腺苷反应元件结合蛋白)的磷酸化。磷脂酰肌醇3激酶(PI3K)/Akt轴的药理学抑制降低了雷帕霉素的神经保护作用,而不影响自噬。相反,自噬的药理学抑制降低了雷帕霉素的神经保护作用,而不影响Akt磷酸化。然而,两种处理均导致迅速转向坏死性细胞死亡。因此,自噬可以成为包括PI3K-Akt-mTOR轴在内的整合性促生存信号的一部分,其激活似乎对药理学和缺血预处理至关重要。