Suppr超能文献

硅纳米柱用于场增强表面光谱学。

Silicon nanopillars for field-enhanced surface spectroscopy.

机构信息

University of Tennessee, Knoxville, Tennessee 37996-1600, United States.

出版信息

ACS Nano. 2012 Apr 24;6(4):2948-59. doi: 10.1021/nn204110z. Epub 2012 Mar 14.

Abstract

Silicon nanowire and nanopillar structures have drawn increased attention in recent years due in part to their unique optical properties. Herein, electron beam lithography combined with reactive-ion etching is used to reproducibly create individual silicon nanopillars of various sizes, shapes, and heights. Finite difference time domain analysis predicts local field intensity enhancements in the vicinity of appropriately sized and coaxially illuminated silicon nanopillars of approximately 2 orders of magnitude. While this level of enhancement is modest when compared to plasmonic systems, the unique advantage of the silicon nanopillar resonators is that they enhance optical fields in substantially larger volumes. By analyzing experimentally measured strength of the silicon Raman phonon line (500 cm(-1)), it was determined that nanopillars produced local field enhancements that are consistent with these predictions. Additionally, we demonstrate that a thin layer of Zn phthalocyanine on the nanopillar surface with a total amount of <30 attomoles produced prominent Raman spectra, yielding enhancement factors (EFs) better than 2 orders of magnitude. Finally, silicon nanopillars of cylindrical and elliptical shapes were labeled with different fluorophors and evaluated for their surface-enhanced fluorescence (SEF) capability. The EFs derived from analysis of the acquired fluorescence microscopy images indicate that silicon nanopillar structures can provide enhancements comparable or even stronger than those typically achieved using plasmonic SEF structures without the limitations of the metal-based substrates, such as fluorescence quenching and an insufficiently large probe volume. It is anticipated that dense arrays of silicon nanopillars will enable SEF assays with extremely high sensitivity, while a broader impact of the reported phenomena is anticipated in photovoltaics, subwavelength light focusing, and fundamental nanophotonics.

摘要

硅纳米线和纳米柱结构近年来受到了越来越多的关注,部分原因是它们具有独特的光学性质。在此,我们采用电子束光刻结合反应离子刻蚀技术,可重复性地制备各种尺寸、形状和高度的单个硅纳米柱。有限差分时域分析预测,在尺寸合适且共轴照明的硅纳米柱附近,局部场强增强约 2 个数量级。虽然与等离子体系统相比,这种增强水平并不高,但硅纳米柱谐振器的独特优势在于,它们可以在更大的体积内增强光学场。通过分析实验测量的硅拉曼声子线(500cm(-1))的强度,确定了纳米柱产生的局部场增强与这些预测结果一致。此外,我们还证明了在纳米柱表面涂覆一层总含量小于 30 个阿托摩尔的 Zn 酞菁,可以产生明显的拉曼光谱,增强因子(EF)超过 2 个数量级。最后,我们对圆柱形和椭圆形的硅纳米柱进行了不同荧光染料的标记,并评估了它们的表面增强荧光(SEF)性能。从获取的荧光显微镜图像分析中得出的 EF 值表明,硅纳米柱结构可以提供与等离子体 SEF 结构相当甚至更强的增强效果,而没有金属基底的局限性,如荧光猝灭和探针体积不足。预计密集排列的硅纳米柱将实现具有极高灵敏度的 SEF 分析,同时预计所报道的现象将在太阳能电池、亚波长光聚焦和基础纳米光子学领域产生更广泛的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验