Suppr超能文献

FtsZ 纤维的力学性质。

The mechanics of FtsZ fibers.

机构信息

Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry, United Kingdom.

出版信息

Biophys J. 2012 Feb 22;102(4):731-8. doi: 10.1016/j.bpj.2012.01.015. Epub 2012 Feb 21.

Abstract

Inhibition of the Fts family of proteins causes the growth of long filamentous cells, indicating that they play some role in cell division. FtsZ polymerizes into protofilaments and assembles into the Z-ring at the future site of the septum of cell division. We analyze the rigidity of GTP-bound FtsZ protofilaments by using cryoelectron microscopy to sample their bending fluctuations. We find that the FtsZ-GTP filament rigidity is κ=4.7±1.0×10(-27) Nm(2), with a corresponding thermal persistence length of l(p)=1.15±0.25μm, much higher than previous estimates. In conjunction with other model studies, our new higher estimate for FtsZ rigidity suggests that contraction of the Z-ring may generate sufficient force to facilitate cell division. The good agreement between the measured mode amplitudes and that predicted by equipartition of energy supports our use of a simple mechanical model for FtsZ fibers. The study also provides evidence that the fibers have no intrinsic global or local curvatures, such as might be caused by partial hydrolysis of the GTP.

摘要

Fts 家族蛋白的抑制会导致长丝状细胞的生长,这表明它们在细胞分裂中发挥了一些作用。FtsZ 聚合形成原纤维,并在细胞分裂的未来隔膜位置组装成 Z 环。我们通过使用低温电子显微镜来采样其弯曲波动,分析了 GTP 结合的 FtsZ 原纤维的刚性。我们发现 FtsZ-GTP 细丝的刚性为 κ=4.7±1.0×10(-27) Nm(2),相应的热持久性长度为 l(p)=1.15±0.25μm,远高于之前的估计。结合其他模型研究,我们对 FtsZ 刚性的新的更高估计表明,Z 环的收缩可能产生足够的力来促进细胞分裂。测量的模式幅度与能量均等分配预测的幅度非常吻合,这支持了我们对 FtsZ 纤维的简单力学模型的使用。该研究还提供了证据表明,纤维没有内在的全局或局部曲率,例如可能由 GTP 的部分水解引起的曲率。

相似文献

1
The mechanics of FtsZ fibers.
Biophys J. 2012 Feb 22;102(4):731-8. doi: 10.1016/j.bpj.2012.01.015. Epub 2012 Feb 21.
2
Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail.
Biophys J. 2017 Oct 17;113(8):1831-1844. doi: 10.1016/j.bpj.2017.08.046.
3
The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure .
J Biol Chem. 2017 Dec 15;292(50):20509-20527. doi: 10.1074/jbc.M117.809939. Epub 2017 Oct 31.
5
FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation.
Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.
6
Force generation in bacteria without nucleotide-dependent bending of cytoskeletal filaments.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051924. doi: 10.1103/PhysRevE.83.051924. Epub 2011 May 27.
7
Strong FtsZ is with the force: mechanisms to constrict bacteria.
Trends Microbiol. 2010 Aug;18(8):348-56. doi: 10.1016/j.tim.2010.06.001. Epub 2010 Jul 1.
8
Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments.
Biophys J. 2008 Mar 1;94(5):1796-806. doi: 10.1529/biophysj.107.115493. Epub 2007 Nov 16.
9
Straight and curved conformations of FtsZ are regulated by GTP hydrolysis.
J Bacteriol. 2000 Jan;182(1):164-70. doi: 10.1128/JB.182.1.164-170.2000.
10
Assembly properties of the bacterial tubulin homolog FtsZ from the cyanobacterium sp. PCC 6803.
J Biol Chem. 2019 Nov 1;294(44):16309-16319. doi: 10.1074/jbc.RA119.009621. Epub 2019 Sep 13.

引用本文的文献

1
Complex state transitions of the bacterial cell division protein FtsZ.
Mol Biol Cell. 2024 Oct 1;35(10):ar130. doi: 10.1091/mbc.E23-11-0446. Epub 2024 Jul 31.
2
FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis.
Nat Commun. 2021 Jun 3;12(1):3310. doi: 10.1038/s41467-021-23387-3.
3
The Assembly Switch Mechanism of FtsZ Filament Revealed by All-Atom Molecular Dynamics Simulations and Coarse-Grained Models.
Front Microbiol. 2021 Mar 30;12:639883. doi: 10.3389/fmicb.2021.639883. eCollection 2021.
4
FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics.
Antibiotics (Basel). 2021 Mar 4;10(3):254. doi: 10.3390/antibiotics10030254.
5
A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging.
Comput Struct Biotechnol J. 2020 Sep 24;18:2774-2788. doi: 10.1016/j.csbj.2020.09.024. eCollection 2020.
7
Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division.
Front Microbiol. 2018 Jan 31;9:111. doi: 10.3389/fmicb.2018.00111. eCollection 2018.
8
Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail.
Biophys J. 2017 Oct 17;113(8):1831-1844. doi: 10.1016/j.bpj.2017.08.046.
9
FtsZ Constriction Force - Curved Protofilaments Bending Membranes.
Subcell Biochem. 2017;84:139-160. doi: 10.1007/978-3-319-53047-5_5.
10
Optical detection of nanometric thermal fluctuations to measure the stiffness of rigid superparamagnetic microrods.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2456-2461. doi: 10.1073/pnas.1608697114. Epub 2017 Feb 22.

本文引用的文献

1
The pH dependence of polymerization and bundling by the essential bacterial cytoskeletal protein FtsZ.
PLoS One. 2011;6(6):e19369. doi: 10.1371/journal.pone.0019369. Epub 2011 Jun 28.
2
FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one.
Microbiol Mol Biol Rev. 2010 Dec;74(4):504-28. doi: 10.1128/MMBR.00021-10.
3
Modeling the physics of FtsZ assembly and force generation.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9238-43. doi: 10.1073/pnas.0902258106. Epub 2009 May 28.
4
Mica surface promotes the assembly of cytoskeletal proteins.
Langmuir. 2009 Apr 9;25(6):3331-5. doi: 10.1021/la8035743.
5
Condensation of FtsZ filaments can drive bacterial cell division.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):121-6. doi: 10.1073/pnas.0807963106. Epub 2008 Dec 30.
6
Force generation by a dynamic Z-ring in Escherichia coli cell division.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):145-50. doi: 10.1073/pnas.0808657106. Epub 2008 Dec 29.
7
Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011902. doi: 10.1103/PhysRevE.77.011902. Epub 2008 Jan 7.
8
MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ.
Curr Biol. 2008 Feb 26;18(4):235-44. doi: 10.1016/j.cub.2008.01.042.
9
Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments.
Biophys J. 2008 Mar 1;94(5):1796-806. doi: 10.1529/biophysj.107.115493. Epub 2007 Nov 16.
10
Z-ring force and cell shape during division in rod-like bacteria.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16110-5. doi: 10.1073/pnas.0702925104. Epub 2007 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验