Molecular Organization and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry, United Kingdom.
PLoS One. 2011;6(6):e19369. doi: 10.1371/journal.pone.0019369. Epub 2011 Jun 28.
There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution--it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)--it stabilizes associations of protofilaments.
越来越多的证据表明,细菌细胞分裂是一个复杂的协调过程,其复杂性可与真核细胞相媲美。在 GTP 的存在下,大肠杆菌 FtsZ 的动态组装是其活性的基础。鉴于 FtsZ 聚合在基本和普遍功能上的重要性,它是新型抗生素的一个极具吸引力的靶标。在这项研究中,我们的目的是进一步了解依赖 GTP 的 FtsZ 聚合机制,我们的主要关注点是其行为对 pH 的依赖性。这项工作的一个关键特点是使用线性二色性 (LD) 来跟踪 FtsZ 单体聚合形成聚合物结构。LD 是指光沿与取向方向平行和垂直的两个方向的不同吸收(在这种情况下,是由剪切流提供的)。因此,它可以很容易地区分 FtsZ 聚合物和单体。它还可以区分 FtsZ 聚合物和不太明确的聚集体,而光散射方法无法做到这一点。通过直角光散射研究了 FtsZ 在一系列 pH 值下的聚合,以探测 FtsZ 结构的质量;通过 LD 实时探测线性聚合纤维的形成;特别开发的磷酸盐释放测定法将鸟苷三磷酸 (GTP) 水解与聚合物形成相关联;以及作为时间和 pH 的函数的反应产物的电子显微镜 (EM) 成像。我们发现,将 pH 从中性降低到 6.5 不会改变溶液中 FtsZ 聚合物的性质——它只是促进了聚合,从而使存在的纤维更长、更丰富。相反,将 pH 降低到 6.0 与引入二价阳离子或 FtsZ 相关蛋白 YgfE(大肠杆菌中假定的 ZapA 同源物)具有相同的效果——它稳定原丝的缔合。