Suppr超能文献

酿酒酵母硫酸盐转运蛋白 Sul2p 的失活:用之即弃。

Inactivation of Saccharomyces cerevisiae sulfate transporter Sul2p: use it and lose it.

机构信息

Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

出版信息

Biophys J. 2012 Feb 22;102(4):768-76. doi: 10.1016/j.bpj.2012.01.005. Epub 2012 Feb 21.

Abstract

Saccharomyces cerevisiae SO(4)(=) transport is regulated over a wide dynamic range. Sulfur starvation causes ∼10,000-fold increase in the (35)SO(4)(=) influx mediated by transporters Sul1p and Sul2p; >80% of the influx is via Sul2p. Adding methionine to S-starved cells causes a 50-fold decline (t(1/2) ∼5 min) in SUL1 and SUL2 mRNA but a slower decline (t(1/2) ∼1 h) in transport. In contrast, SO(4)(=) addition does not affect mRNA but causes a rapid (t(1/2) = 2-4 min) decrease in transport. In met3Δ cells (unable to metabolize SO(4)(=)), addition of SO(4)(=) to S-starved cells causes inactivation of (35)SO(4)(=) influx over times in which cellular SO(4)(=) contents are nearly constant. The relationship between cellular SO(4)(=) and transport inactivation shows that cellular SO(4)(=) is not the signal for Sul2p inactivation. Instead, the transport inactivation rate has the same dependence on extracellular SO(4)(=) as (35)SO(4)(=) influx, indicating that Sul2p exhibits use-dependent inactivation; the transport process itself increases the probability of Sul2p inactivation and degradation. In addition, there is a transient efflux of SO(4)(=) shortly after adding >0.02 mM SO(4)(=) to S-starved met3Δ cells. This transient efflux provides further protection against excessive SO(4)(=) influx and may represent an alternate transport mode of Sul2p.

摘要

酿酒酵母 SO(4)(=) 转运在很宽的动态范围内受到调节。硫饥饿导致由 Sul1p 和 Sul2p 介导的 (35)SO(4)(=) 内流增加约 10,000 倍;超过 80%的内流是通过 Sul2p 进行的。向 S 饥饿细胞中添加蛋氨酸会导致 SUL1 和 SUL2 mRNA 下降 50 倍(t(1/2)∼5 min),但转运下降较慢(t(1/2)∼1 h)。相比之下,SO(4)(=)的添加不会影响 mRNA,但会导致转运迅速(t(1/2)=2-4 min)下降。在 met3Δ 细胞(无法代谢 SO(4)(=))中,向 S 饥饿细胞中添加 SO(4)(=)会导致 (35)SO(4)(=)内流在细胞 SO(4)(=)含量几乎不变的时间内失活。细胞 SO(4)(=)与转运失活之间的关系表明,细胞 SO(4)(=)不是 Sul2p 失活的信号。相反,转运失活速率与细胞外 SO(4)(=)的依赖性与 (35)SO(4)(=)内流相同,表明 Sul2p 表现出使用依赖性失活;转运过程本身增加了 Sul2p 失活和降解的可能性。此外,在向 S 饥饿的 met3Δ 细胞中添加 >0.02 mM SO(4)(=)后,会短暂地排出 SO(4)(=)。这种短暂的外排提供了对过量 SO(4)(=)内流的进一步保护,可能代表 Sul2p 的另一种转运模式。

相似文献

1
Inactivation of Saccharomyces cerevisiae sulfate transporter Sul2p: use it and lose it.
Biophys J. 2012 Feb 22;102(4):768-76. doi: 10.1016/j.bpj.2012.01.005. Epub 2012 Feb 21.
2
Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae.
Genetics. 1997 Mar;145(3):627-35. doi: 10.1093/genetics/145.3.627.
3
Sul1 and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation.
J Biol Chem. 2015 Apr 17;290(16):10430-46. doi: 10.1074/jbc.M114.629022. Epub 2015 Feb 27.
4
Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
Yeast. 2021 Jun;38(6):367-381. doi: 10.1002/yea.3553. Epub 2021 Mar 1.
5
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
6
Inorganic Phosphate and Sulfate Transport in S. cerevisiae.
Adv Exp Med Biol. 2016;892:253-269. doi: 10.1007/978-3-319-25304-6_10.
8
Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae.
J Gen Microbiol. 1986 Feb;132(2):379-85. doi: 10.1099/00221287-132-2-379.
9
Regulation of maltose transport in Saccharomyces cerevisiae.
Arch Microbiol. 2001 Jul;176(1-2):96-105. doi: 10.1007/s002030100300.
10
Effect of cadmium on mRNA mistranslation in Saccharomyces cerevisiae.
J Basic Microbiol. 2020 Apr;60(4):372-379. doi: 10.1002/jobm.201900495. Epub 2020 Jan 8.

引用本文的文献

1
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
5
Sul1 and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation.
J Biol Chem. 2015 Apr 17;290(16):10430-46. doi: 10.1074/jbc.M114.629022. Epub 2015 Feb 27.
7
Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters.
Curr Genet. 2013 Nov;59(4):197-206. doi: 10.1007/s00294-013-0413-y. Epub 2013 Oct 11.
8
The SLC26 gene family of anion transporters and channels.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):494-515. doi: 10.1016/j.mam.2012.07.009.

本文引用的文献

1
Transport activity-dependent intracellular sorting of the yeast general amino acid permease.
Mol Biol Cell. 2011 Jun 1;22(11):1919-29. doi: 10.1091/mbc.E10-10-0800. Epub 2011 Apr 6.
2
The ubiquitin code of yeast permease trafficking.
Trends Cell Biol. 2010 Apr;20(4):196-204. doi: 10.1016/j.tcb.2010.01.004.
3
Transport-dependent endocytosis and turnover of a uric acid-xanthine permease.
Mol Microbiol. 2010 Jan;75(1):246-60. doi: 10.1111/j.1365-2958.2009.06997.x. Epub 2009 Dec 11.
4
Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis.
Plant Cell. 2009 Nov;21(11):3610-22. doi: 10.1105/tpc.109.068593. Epub 2009 Nov 30.
5
Down-regulation of a manganese transporter in the face of metal toxicity.
Mol Biol Cell. 2009 Jun;20(12):2810-9. doi: 10.1091/mbc.e08-10-1084. Epub 2009 Apr 15.
6
Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper.
J Biol Chem. 2009 Feb 13;284(7):4112-22. doi: 10.1074/jbc.M807909200. Epub 2008 Dec 16.
7
Solute-binding sites in ABC transporters for recognition, occlusion and trans-inhibition.
ChemMedChem. 2009 Jan;4(1):25-8. doi: 10.1002/cmdc.200800328.
8
Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter.
Science. 2008 Jul 11;321(5886):246-50. doi: 10.1126/science.1156213. Epub 2008 May 29.
9
Going with the flow: trafficking-dependent and -independent regulation of serotonin transport.
Traffic. 2008 Sep;9(9):1393-402. doi: 10.1111/j.1600-0854.2008.00757.x. Epub 2008 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验