Centre for Robotics and Neural Systems, University of Plymouth, Devon, PL48AA, United Kingdom.
Neural Netw. 2012 Aug;32:165-73. doi: 10.1016/j.neunet.2012.02.012. Epub 2012 Feb 14.
In this paper we present a neuro-robotic model that uses artificial neural networks for investigating the relations between the development of symbol manipulation capabilities and of sensorimotor knowledge in the humanoid robot iCub. We describe a cognitive robotics model in which the linguistic input provided by the experimenter guides the autonomous organization of the robot's knowledge. In this model, sequences of linguistic inputs lead to the development of higher-order concepts grounded on basic concepts and actions. In particular, we show that higher-order symbolic representations can be indirectly grounded in action primitives directly grounded in sensorimotor experiences. The use of recurrent neural network also permits the learning of higher-order concepts based on temporal sequences of action primitives. Hence, the meaning of a higher-order concept is obtained through the combination of basic sensorimotor knowledge. We argue that such a hierarchical organization of concepts can be a possible account for the acquisition of abstract words in cognitive robots.
在本文中,我们提出了一个神经机器人模型,该模型使用人工神经网络来研究类人机器人 iCub 中符号操作能力和感觉运动知识发展之间的关系。我们描述了一个认知机器人模型,其中实验者提供的语言输入指导机器人知识的自主组织。在这个模型中,语言输入序列导致基于基本概念和动作的更高阶概念的发展。具体来说,我们表明,高阶符号表示可以间接基于直接基于感觉运动经验的动作基元来实现。递归神经网络的使用还允许基于动作基元的时间序列学习高阶概念。因此,高阶概念的意义是通过组合基本的感觉运动知识获得的。我们认为,这种概念的分层组织可以为认知机器人中抽象词的获取提供一种可能的解释。