Suppr超能文献

齿状回中模式分离效率的计算模型及其对精神分裂症的影响

A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophrenia.

作者信息

Faghihi Faramarz, Moustafa Ahmed A

机构信息

Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA.

Department of Veterans Affairs, VA New Jersey Health Care System East Orange, NJ, USA ; School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, University of Western Sydney Sydney NSW, Australia.

出版信息

Front Syst Neurosci. 2015 Mar 25;9:42. doi: 10.3389/fnsys.2015.00042. eCollection 2015.

Abstract

Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron's encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed.

摘要

海马体中的信息处理始于将内嗅皮层(EC)的脉冲活动传递到齿状回(DG)。DG会分离EC中的活动模式,因此它在包括记忆在内的海马体功能中发挥着重要作用。这些神经网络的结构和生理参数使海马体能够高效地编码动物在其一生中接收和处理的大量输入信息。DG的神经编码能力取决于其单个神经元的编码和模式分离效率。在本研究中,对DG的编码进行建模,以便使用不同参数值的模拟来测量单个神经元和模式分离效率。为此,提出了一个单个神经元效率的概率模型,以研究结构和生理参数的作用。利用DG颗粒细胞的电生理特征,结合已知的EC和DG的神经元数量来构建神经网络。将具有不同放电概率的、作为EC中激活神经元的分离输入呈现给DG。针对EC和DG之间不同的连接率,测量DG的模式分离效率。结果表明,在对DG神经元没有反馈抑制的情况下,DG表现出低分离效率和高放电频率。反馈抑制可以提高分离效率,同时导致DG中单个神经元的编码效率非常低,以及DG中神经元的放电频率非常低(稀疏放电)。这项工作结合理论测量,为海马体中的实验观察结果提供了一个机理解释。此外,该模型预测了抑制性神经元受损在精神分裂症中的关键作用,在精神分裂症中已观察到DG的模式分离存在缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/4373261/1fcf465f90b8/fnsys-09-00042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验