Suppr超能文献

中缝背核计算模型的网络特性。

Network properties of a computational model of the dorsal raphe nucleus.

机构信息

Intelligent Systems Research Centre, University of Ulster, Magee Campus, Northland Road, BT48 7JL, Northern Ireland, UK.

出版信息

Neural Netw. 2012 Aug;32:15-25. doi: 10.1016/j.neunet.2012.02.009. Epub 2012 Feb 16.

Abstract

Serotonin (5-HT) plays an important role in regulating mood, cognition and behaviour. The midbrain dorsal raphe nucleus (DRN) is one of the primary sources of 5-HT. Recent studies show that DRN neuronal activities can encode rewarding (e.g., appetitive) and unrewarding (e.g., aversive) behaviours. Experiments have also shown that DRN neurons can exhibit heterogeneous spiking behaviours. In this work, we build and study a basic spiking neuronal network model of the DRN constrained by neuronal properties observed in experiments. We use an efficient adaptive quadratic integrate-and-fire neuronal model to capture slow afterhyperpolarization current, occasional bursting behaviours in 5-HT neurons, and fast spiking activities in the non-5-HT inhibitory neurons. Provided that our noisy and heterogeneous spiking neuronal network model adopts a feedforward inhibitory network architecture, it is able to replicate the main features of DRN neuronal activities recorded in monkeys performing a reward-based memory-guided saccade task. The model exhibits theta band oscillation, especially among the non-5-HT inhibitory neurons during the rewarding outcome of a simulated trial, thus forming a model prediction. By varying the inhibitory synaptic strengths and the afferent inputs, we find that the network model can oscillate over a range of relatively low frequencies, allow co-existence of multiple stable frequencies, and spike synchrony can spread from within a local neural subgroup to global. Our model suggests plausible network architecture, provides interesting model predictions that can be experimentally tested, and offers a sufficiently realistic multi-scale model for 5-HT neuromodulation simulations.

摘要

血清素(5-HT)在调节情绪、认知和行为方面起着重要作用。中脑背侧缝核(DRN)是 5-HT 的主要来源之一。最近的研究表明,DRN 神经元活动可以对奖赏(例如,奖赏性)和非奖赏(例如,厌恶)行为进行编码。实验还表明,DRN 神经元可以表现出异质的放电行为。在这项工作中,我们构建并研究了一个受实验中观察到的神经元特性约束的 DRN 基本放电神经元网络模型。我们使用有效的自适应二次积分和放电神经元模型来捕获 5-HT 神经元中的慢后超极化电流、偶尔的爆发行为,以及非 5-HT 抑制性神经元中的快速放电活动。假设我们的噪声和异质放电神经元网络模型采用前馈抑制性网络结构,它能够复制猴子在执行基于奖励的记忆引导扫视任务时记录的 DRN 神经元活动的主要特征。该模型表现出θ带振荡,特别是在模拟试验的奖赏结果期间的非 5-HT 抑制性神经元中,从而形成了一个模型预测。通过改变抑制性突触强度和传入输入,我们发现网络模型可以在相对较低的频率范围内振荡,允许多个稳定频率共存,并且尖峰同步性可以从局部神经元亚群传播到全局。我们的模型提出了合理的网络结构,提供了有趣的模型预测,可以通过实验进行测试,并为 5-HT 神经调制模拟提供了一个足够真实的多尺度模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验