基于正交最小二乘法的复值函数链接网络。

Orthogonal least squares based complex-valued functional link network.

机构信息

Department of System Design Engineering, University of Fukui, Fukui, 910-8507, Japan.

出版信息

Neural Netw. 2012 Aug;32:257-66. doi: 10.1016/j.neunet.2012.02.017. Epub 2012 Feb 16.

Abstract

Functional link networks are single-layered neural networks that impose nonlinearity in the input layer using nonlinear functions of the original input variables. In this paper, we present a fully complex-valued functional link network (CFLN) with multivariate polynomials as the nonlinear functions. Unlike multilayer neural networks, the CFLN is free from local minima problem, and it offers very fast learning of parameters because of its linear structure. Polynomial based CFLN does not require an activation function which is a major concern in the complex-valued neural networks. However, it is important to select a smaller subset of polynomial terms (monomials) for faster and better performance since the number of all possible monomials may be quite large. Here, we use the orthogonal least squares (OLS) method in a constructive fashion (starting from lower degree to higher) for the selection of a parsimonious subset of monomials. It is argued here that computing CFLN in purely complex domain is advantageous than in double-dimensional real domain, in terms of number of connection parameters, faster design, and possibly generalization performance. Simulation results on a function approximation, wind prediction with real-world data, and a nonlinear channel equalization problem exhibit that the OLS based CFLN yields very simple structure having favorable performance.

摘要

功能链接网络是一种单层神经网络,它在输入层使用原始输入变量的非线性函数来施加非线性。在本文中,我们提出了一种完全复数值功能链接网络(CFLN),其非线性函数为多元多项式。与多层神经网络不同,CFLN 没有局部极小值问题,并且由于其线性结构,它提供了非常快速的参数学习。基于多项式的 CFLN 不需要激活函数,这是复数值神经网络的一个主要关注点。然而,选择较小的多项式项(单项式)子集对于更快更好的性能是很重要的,因为所有可能的单项式的数量可能非常大。在这里,我们以一种构造性的方式(从低阶到高阶)使用正交最小二乘法(OLS)来选择一个简约的单项式子集。这里的论点是,在纯复域中计算 CFLN 比在二维实域中计算具有更多的连接参数、更快的设计和可能的泛化性能的优势。在函数逼近、真实数据的风力预测和非线性信道均衡化问题上的仿真结果表明,基于 OLS 的 CFLN 具有非常简单的结构,具有良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索