Suppr超能文献

分数阶神经网络中的非线性动力学与混沌。

Nonlinear dynamics and chaos in fractional-order neural networks.

机构信息

Institute e-Austria Timisoara, Bd. V. Parvan nr. 4, room 045B, 300223, Timisoara, Romania.

出版信息

Neural Netw. 2012 Aug;32:245-56. doi: 10.1016/j.neunet.2012.02.030. Epub 2012 Feb 14.

Abstract

Several topics related to the dynamics of fractional-order neural networks of Hopfield type are investigated, such as stability and multi-stability (coexistence of several different stable states), bifurcations and chaos. The stability domain of a steady state is completely characterized with respect to some characteristic parameters of the system, in the case of a neural network with ring or hub structure. These simplified connectivity structures play an important role in characterizing the network's dynamical behavior, allowing us to gain insight into the mechanisms underlying the behavior of recurrent networks. Based on the stability analysis, we are able to identify the critical values of the fractional order for which Hopf bifurcations may occur. Simulation results are presented to illustrate the theoretical findings and to show potential routes towards the onset of chaotic behavior when the fractional order of the system increases.

摘要

研究了 Hopfield 型分数阶神经网络动力学的几个方面,如稳定性和多稳定性(共存的几个不同的稳定状态)、分岔和混沌。在具有环形或中心结构的神经网络的情况下,针对系统的某些特征参数,完全描述了一个稳定状态的稳定域。这些简化的连接结构在刻画网络的动态行为方面起着重要的作用,使我们能够深入了解递归网络行为的机制。基于稳定性分析,我们能够确定分数阶的临界值,在这些临界值下可能发生 Hopf 分岔。给出了模拟结果,以说明理论发现,并展示了当系统的分数阶增加时,混沌行为出现的潜在途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验