Eftekhari Leila, Amirian Mohammad M
Department of Mathematics, Tarbiat Modares University, Tehran, IR 14117-13116 Iran.
Department of Mathematics and Statistics, Dalhousie University, Halifax, NS CA B3H4R2 Canada.
Cogn Neurodyn. 2023 Aug;17(4):1045-1059. doi: 10.1007/s11571-022-09844-9. Epub 2022 Aug 27.
A memristor is a nonlinear two-terminal electrical element that incorporates memory features and nanoscale properties, enabling us to design very high-density artificial neural networks. To enhance the memory property, we should use mathematical frameworks like fractional calculus, which is capable of doing so. Here, we first present a fractional-order memristor synapse-coupling Hopfield neural network on two neurons and then extend the model to a neural network with a ring structure that consists of sub-network neurons, increasing the synchronization in the network. Necessary and sufficient conditions for the stability of equilibrium points are investigated, highlighting the dependency of the stability on the fractional-order value and the number of neurons. Numerical simulations and bifurcation analysis, along with Lyapunov exponents, are given in the two-neuron case that substantiates the theoretical findings, suggesting possible routes towards chaos when the fractional order of the system increases. In the -neuron case also, it is revealed that the stability depends on the structure and number of sub-networks.
忆阻器是一种非线性二端电气元件,它具有记忆特性和纳米级特性,使我们能够设计出非常高密度的人工神经网络。为了增强记忆特性,我们应该使用像分数阶微积分这样能够做到这一点的数学框架。在此,我们首先提出一个基于两个神经元的分数阶忆阻器突触耦合霍普菲尔德神经网络,然后将该模型扩展到具有由子网神经元组成的环形结构的神经网络,从而增加网络中的同步性。研究了平衡点稳定性的充要条件,突出了稳定性对分数阶值和神经元数量的依赖性。在双神经元情况下给出了数值模拟、分岔分析以及李雅普诺夫指数,证实了理论结果,表明当系统的分数阶增加时可能通向混沌的途径。在多神经元情况下也表明,稳定性取决于子网的结构和数量。