Biochemistry Department, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
J Struct Biol. 2012 Sep;179(3):252-60. doi: 10.1016/j.jsb.2011.12.024. Epub 2012 Feb 23.
Knowing the 3-D structure of an RNA is fundamental to understand its biological function. Nowadays X-ray crystallography and NMR spectroscopy are systematically applied to newly discovered RNAs. However, the application of these high-resolution techniques is not always possible, and thus scientists must turn to lower resolution alternatives. Here, we introduce a pipeline to systematically generate atomic resolution 3-D structures that are consistent with low-resolution data sets. We compare and evaluate the discriminative power of a number of low-resolution experimental techniques to reproduce the structure of the Escherichia coli tRNA(VAL) and P4-P6 domain of the Tetrahymena thermophila group I intron. We test single and combinations of the most accessible low-resolution techniques, i.e. hydroxyl radical footprinting (OH), methidiumpropyl-EDTA (MPE), multiplexed hydroxyl radical cleavage (MOHCA), and small-angle X-ray scattering (SAXS). We show that OH-derived constraints are accurate to discriminate structures at the atomic level, whereas EDTA-based constraints apply to global shape determination. We provide a guide for choosing which experimental techniques or combination of thereof is best in which context. The pipeline represents an important step towards high-throughput low-resolution RNA structure determination.
了解 RNA 的三维结构对于理解其生物学功能至关重要。如今,X 射线晶体学和 NMR 光谱学被系统地应用于新发现的 RNA。然而,这些高分辨率技术的应用并不总是可行的,因此科学家们必须转向低分辨率的替代方法。在这里,我们介绍了一个流水线,用于系统地生成与低分辨率数据集一致的原子分辨率三维结构。我们比较和评估了许多低分辨率实验技术的区分能力,以重现大肠杆菌 tRNA(VAL)和嗜热四膜虫组 I 内含子 P4-P6 结构域的结构。我们测试了最容易获得的低分辨率技术的单个和组合,即羟基自由基足迹法(OH)、甲脒基丙基-EDTA(MPE)、多重羟基自由基切割(MOHCA)和小角 X 射线散射(SAXS)。我们表明,OH 衍生的约束条件足以在原子水平上区分结构,而基于 EDTA 的约束条件适用于全局形状确定。我们提供了一个指南,用于在何种情况下选择最佳的实验技术或其组合。该流水线代表了迈向高通量低分辨率 RNA 结构测定的重要一步。