Suppr超能文献

使用低分辨率数据确定 RNA 的三维结构。

Determining RNA three-dimensional structures using low-resolution data.

机构信息

Biochemistry Department, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.

出版信息

J Struct Biol. 2012 Sep;179(3):252-60. doi: 10.1016/j.jsb.2011.12.024. Epub 2012 Feb 23.

Abstract

Knowing the 3-D structure of an RNA is fundamental to understand its biological function. Nowadays X-ray crystallography and NMR spectroscopy are systematically applied to newly discovered RNAs. However, the application of these high-resolution techniques is not always possible, and thus scientists must turn to lower resolution alternatives. Here, we introduce a pipeline to systematically generate atomic resolution 3-D structures that are consistent with low-resolution data sets. We compare and evaluate the discriminative power of a number of low-resolution experimental techniques to reproduce the structure of the Escherichia coli tRNA(VAL) and P4-P6 domain of the Tetrahymena thermophila group I intron. We test single and combinations of the most accessible low-resolution techniques, i.e. hydroxyl radical footprinting (OH), methidiumpropyl-EDTA (MPE), multiplexed hydroxyl radical cleavage (MOHCA), and small-angle X-ray scattering (SAXS). We show that OH-derived constraints are accurate to discriminate structures at the atomic level, whereas EDTA-based constraints apply to global shape determination. We provide a guide for choosing which experimental techniques or combination of thereof is best in which context. The pipeline represents an important step towards high-throughput low-resolution RNA structure determination.

摘要

了解 RNA 的三维结构对于理解其生物学功能至关重要。如今,X 射线晶体学和 NMR 光谱学被系统地应用于新发现的 RNA。然而,这些高分辨率技术的应用并不总是可行的,因此科学家们必须转向低分辨率的替代方法。在这里,我们介绍了一个流水线,用于系统地生成与低分辨率数据集一致的原子分辨率三维结构。我们比较和评估了许多低分辨率实验技术的区分能力,以重现大肠杆菌 tRNA(VAL)和嗜热四膜虫组 I 内含子 P4-P6 结构域的结构。我们测试了最容易获得的低分辨率技术的单个和组合,即羟基自由基足迹法(OH)、甲脒基丙基-EDTA(MPE)、多重羟基自由基切割(MOHCA)和小角 X 射线散射(SAXS)。我们表明,OH 衍生的约束条件足以在原子水平上区分结构,而基于 EDTA 的约束条件适用于全局形状确定。我们提供了一个指南,用于在何种情况下选择最佳的实验技术或其组合。该流水线代表了迈向高通量低分辨率 RNA 结构测定的重要一步。

相似文献

1
Determining RNA three-dimensional structures using low-resolution data.
J Struct Biol. 2012 Sep;179(3):252-60. doi: 10.1016/j.jsb.2011.12.024. Epub 2012 Feb 23.
2
Comparison of the global structure and dynamics of native and unmodified tRNAval.
Biochemistry. 2005 Apr 26;44(16):6024-33. doi: 10.1021/bi0473399.
4
Structural inference of native and partially folded RNA by high-throughput contact mapping.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4144-9. doi: 10.1073/pnas.0709032105. Epub 2008 Mar 5.
5
Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data.
J Biomol NMR. 2008 Oct;42(2):99-109. doi: 10.1007/s10858-008-9267-x. Epub 2008 Sep 12.
6
RNA structure determination using SAXS data.
J Phys Chem B. 2010 Aug 12;114(31):10039-48. doi: 10.1021/jp1057308.
8
Mapping nucleic acid structure by hydroxyl radical cleavage.
Curr Opin Chem Biol. 2005 Apr;9(2):127-34. doi: 10.1016/j.cbpa.2005.02.009.
9
Evidence for class-specific discrimination of a semiconserved base pair by tRNA synthetases.
Biochemistry. 1995 Aug 1;34(30):9795-800. doi: 10.1021/bi00030a017.

引用本文的文献

1
Combining Experimental Restraints and RNA 3D Structure Prediction in RNA Nanotechnology.
Methods Mol Biol. 2023;2709:51-64. doi: 10.1007/978-1-0716-3417-2_3.
2
Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.
J Phys Chem B. 2018 May 10;122(18):4771-4783. doi: 10.1021/acs.jpcb.8b00575. Epub 2018 Apr 27.
3
Structure modeling of RNA using sparse NMR constraints.
Nucleic Acids Res. 2017 Dec 15;45(22):12638-12647. doi: 10.1093/nar/gkx1058.
4
CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
Nucleic Acids Res. 2017 Aug 21;45(14):e136. doi: 10.1093/nar/gkx538.
5
SAXS studies of RNA: structures, dynamics, and interactions with partners.
Wiley Interdiscip Rev RNA. 2016 Jul;7(4):512-26. doi: 10.1002/wrna.1349. Epub 2016 Apr 12.
6
Achievements and challenges in structural bioinformatics and computational biophysics.
Bioinformatics. 2015 Jan 1;31(1):146-50. doi: 10.1093/bioinformatics/btu769. Epub 2014 Dec 8.
7
Characterizing RNA ensembles from NMR data with kinematic models.
Nucleic Acids Res. 2014 Sep;42(15):9562-72. doi: 10.1093/nar/gku707. Epub 2014 Aug 11.
8
Methods for SAXS-based structure determination of biomolecular complexes.
Adv Mater. 2014 Dec 10;26(46):7902-10. doi: 10.1002/adma.201304475. Epub 2014 May 30.
9
Modeling the structure of RNA molecules with small-angle X-ray scattering data.
PLoS One. 2013 Nov 4;8(11):e78007. doi: 10.1371/journal.pone.0078007. eCollection 2013.
10
Safer one-pot synthesis of the 'SHAPE' reagent 1-methyl-7-nitroisatoic anhydride (1m7).
RNA. 2013 Dec;19(12):1857-63. doi: 10.1261/rna.042374.113. Epub 2013 Oct 18.

本文引用的文献

2
Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation.
Curr Opin Struct Biol. 2011 Jun;21(3):296-305. doi: 10.1016/j.sbi.2011.03.009. Epub 2011 Apr 14.
3
Physics-based de novo prediction of RNA 3D structures.
J Phys Chem B. 2011 Apr 14;115(14):4216-26. doi: 10.1021/jp112059y. Epub 2011 Mar 17.
4
Computational approaches to 3D modeling of RNA.
J Phys Condens Matter. 2010 Jul 21;22(28):283101. doi: 10.1088/0953-8984/22/28/283101. Epub 2010 Jun 15.
5
Clustering to identify RNA conformations constrained by secondary structure.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3590-5. doi: 10.1073/pnas.1018653108. Epub 2011 Feb 11.
6
Developing three-dimensional models of putative-folding intermediates of the HDV ribozyme.
Structure. 2010 Dec 8;18(12):1608-16. doi: 10.1016/j.str.2010.09.024.
7
RNA structure determination using SAXS data.
J Phys Chem B. 2010 Aug 12;114(31):10039-48. doi: 10.1021/jp1057308.
8
Topology links RNA secondary structure with global conformation, dynamics, and adaptation.
Science. 2010 Jan 8;327(5962):202-6. doi: 10.1126/science.1181085.
9
The ligand-free state of the TPP riboswitch: a partially folded RNA structure.
J Mol Biol. 2010 Feb 12;396(1):153-65. doi: 10.1016/j.jmb.2009.11.030. Epub 2009 Nov 17.
10
Do conformational biases of simple helical junctions influence RNA folding stability and specificity?
RNA. 2009 Dec;15(12):2195-205. doi: 10.1261/rna.1747509. Epub 2009 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验