Department of Biochemistry and Molecular Biology, 929 East 57th Street, University of Chicago, Chicago, Illinois 60637, USA.
J Phys Chem B. 2010 Aug 12;114(31):10039-48. doi: 10.1021/jp1057308.
Exploiting the experimental information from small-angle X-ray solution scattering (SAXS) in conjunction with structure prediction algorithms can be advantageous in the case of ribonucleic acids (RNA), where global restraints on the 3D fold are often lacking. Traditional usage of SAXS data often starts by attempting to reconstruct the molecular shape ab initio, which is subsequently used to assess the quality of a model. Here, an alternative strategy is explored whereby the models from a very large decoy set are directly sorted according to their fit to the SAXS data. For rapid computation of SAXS patterns, the method developed here makes use of a coarse-grained representation of RNA. It also accounts for the explicit treatment of the contribution to the scattering of water molecules and ions surrounding the RNA. The method, called Fast-SAXS-RNA, is first calibrated using a tRNA (tRNA-val) and then tested on the P4-P6 fragment of group I intron (P4-P6). Fast-SAXS-RNA is then used as a filter for decoy models generated by the MC-Fold and MC-Sym pipeline, a suite of RNA 3D all-atom structure algorithms that encode and exploit RNA 3D architectural principles. The ability of Fast-SAXS-RNA to discriminate native folds is tested against three widely used RNA molecules in molecular modeling benchmarks: the tRNA, the P4-P6, and a synthetic hairpin suspected to assemble into a homodimer. For each molecule, a large pool of decoys are generated, scored, and ranked using Fast-SAXS-RNA. The method is able to identify low-rmsd models among top ranking structures, for both tRNA and P4-P6. For the hairpin, the approach correctly identifies the dimeric state as the solution structure over the monomeric state and alternative secondary structures. The method offers a powerful strategy for recognizing native RNA conformations as well as multimeric assemblies and alternative secondary structures, thus enabling high-throughput RNA structure determination using SAXS data.
利用小角 X 射线散射(SAXS)的实验信息,结合结构预测算法,在核糖核酸(RNA)的情况下可能是有利的,因为 RNA 的 3D 折叠通常缺乏全局约束。传统的 SAXS 数据使用方法通常首先尝试从头开始重建分子形状,然后使用该形状来评估模型的质量。在这里,探索了一种替代策略,其中直接根据与 SAXS 数据的拟合程度对来自非常大的诱饵集的模型进行排序。为了快速计算 SAXS 图谱,这里开发的方法利用了 RNA 的粗粒度表示。它还考虑了水分子和围绕 RNA 的离子对散射的贡献的显式处理。该方法称为 Fast-SAXS-RNA,首先使用 tRNA(tRNA-val)进行校准,然后在 I 组内含子的 P4-P6 片段(P4-P6)上进行测试。然后,Fast-SAXS-RNA 用作由 MC-Fold 和 MC-Sym 管道生成的诱饵模型的过滤器,该管道是一组 RNA 3D 全原子结构算法,编码并利用 RNA 3D 架构原理。Fast-SAXS-RNA 区分天然折叠的能力在分子建模基准测试中针对三种广泛使用的 RNA 分子进行了测试:tRNA、P4-P6 和一种怀疑组装成同源二聚体的合成发夹。对于每个分子,使用 Fast-SAXS-RNA 生成、评分和对大量诱饵进行排名。该方法能够在 RNA 和 P4-P6 的顶级结构中识别低 rmsd 模型。对于发夹,该方法正确地将二聚体状态识别为溶液结构,而不是单体状态和替代二级结构。该方法提供了一种强大的策略,用于识别天然 RNA 构象以及多聚体组装和替代二级结构,从而能够使用 SAXS 数据进行高通量 RNA 结构测定。