Suppr超能文献

抗菌肽CM15在模型脂质双层中的比较分子动力学模拟。

Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers.

作者信息

Wang Yi, Schlamadinger Diana E, Kim Judy E, McCammon J Andrew

机构信息

Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Biochim Biophys Acta. 2012 May;1818(5):1402-9. doi: 10.1016/j.bbamem.2012.02.017. Epub 2012 Feb 23.

Abstract

We report altogether 3-μs molecular dynamics (MD) simulations of the antimicrobial peptide CM15 to systematically investigate its interaction with two model lipid bilayers, pure POPC and mixed POPG:POPC (1:2). Starting with either an α-helical or a random-coil conformation, CM15 is found to insert into both bilayers. Peptide-lipid interaction is stronger with the anionic POPG:POPC than the zwitterionic POPC, which is largely attributed to the electrostatic attraction between CM15 and the negatively charged POPG. Simulations initiated with CM15 as a random coil allowed us to study peptide folding at the lipid-water interface. Interestingly, CM15 folding appears to be faster in POPC than POPG:POPC, which may be explained by a lower activation energy barrier of structural rearrangement in the former system. Our data also suggest that compared with the random-coil conformation, CM15 in a pre-folded α-helix has significantly reduced interactions with the lipids, indicating that peptide initial structures may bias the simulation results considerably on the 100-ns timescale. The implications of this result should be considered when preparing and interpreting future AMP simulations.

摘要

我们总共报告了抗菌肽CM15的3微秒分子动力学(MD)模拟,以系统地研究其与两种模型脂质双层(纯POPC和混合POPG:POPC(1:2))的相互作用。从α螺旋或无规卷曲构象开始,发现CM15可插入两种双层中。肽与脂质的相互作用在阴离子型POPG:POPC中比在两性离子型POPC中更强,这在很大程度上归因于CM15与带负电荷的POPG之间的静电吸引。以无规卷曲形式的CM15开始的模拟使我们能够研究肽在脂质-水界面的折叠。有趣的是,CM15在POPC中的折叠似乎比在POPG:POPC中更快,这可以通过前一个系统中结构重排的较低活化能垒来解释。我们的数据还表明,与无规卷曲构象相比,预折叠的α螺旋形式的CM15与脂质的相互作用显著减少,这表明在100纳秒时间尺度上,肽的初始结构可能会对模拟结果产生很大影响。在准备和解释未来的抗菌肽模拟时,应考虑这一结果的影响。

相似文献

1
Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers.
Biochim Biophys Acta. 2012 May;1818(5):1402-9. doi: 10.1016/j.bbamem.2012.02.017. Epub 2012 Feb 23.
2
Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
J Biomol Struct Dyn. 2018 Jun;36(8):2070-2084. doi: 10.1080/07391102.2017.1341340. Epub 2017 Jun 22.
6
Molecular interactions of Alzheimer amyloid-β oligomers with neutral and negatively charged lipid bilayers.
Phys Chem Chem Phys. 2013 Jun 21;15(23):8878-89. doi: 10.1039/c3cp44448a. Epub 2013 Mar 14.
7
Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
J Mol Biol. 2009 Sep 25;392(3):837-54. doi: 10.1016/j.jmb.2009.06.071. Epub 2009 Jul 2.
8
Microsecond molecular dynamics simulations of lipid mixing.
Langmuir. 2014 Oct 14;30(40):11993-2001. doi: 10.1021/la502363b. Epub 2014 Oct 1.

引用本文的文献

3
Molecular Dynamics Investigation of Lipid-Specific Interactions with a Fusion Peptide.
Biomolecules. 2024 Feb 27;14(3):285. doi: 10.3390/biom14030285.
4
Effect of CM15 on Supported Lipid Bilayer Probed by Atomic Force Microscopy.
Membranes (Basel). 2023 Oct 28;13(11):864. doi: 10.3390/membranes13110864.
5
Peptide Power: Mechanistic Insights into the Effect of Mitochondria-Targeted Tetrapeptides on Membrane Electrostatics from Molecular Simulations.
Mol Pharm. 2023 Dec 4;20(12):6114-6129. doi: 10.1021/acs.molpharmaceut.3c00480. Epub 2023 Oct 30.
7
Molecular Dynamics Simulation of Antimicrobial Peptide CM15 in and Model Bilayer Lipid.
Iran J Biotechnol. 2023 Apr 1;21(2):e3344. doi: 10.30498/ijb.2023.337246.3344. eCollection 2023 Apr.
8
Application of a deep generative model produces novel and diverse functional peptides against microbial resistance.
Comput Struct Biotechnol J. 2022 Dec 19;21:463-471. doi: 10.1016/j.csbj.2022.12.029. eCollection 2023.
9
Organizations of melittin peptides after spontaneous penetration into cell membranes.
Biophys J. 2022 Nov 15;121(22):4368-4381. doi: 10.1016/j.bpj.2022.10.002. Epub 2022 Oct 4.

本文引用的文献

1
The MARTINI Coarse-Grained Force Field: Extension to Proteins.
J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x.
2
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Enhanced Lipid Diffusion and Mixing in Accelerated Molecular Dynamics.
J Chem Theory Comput. 2011 Oct 11;7(10):3199-3207. doi: 10.1021/ct200430c. Epub 2011 Aug 24.
5
Implementation of Accelerated Molecular Dynamics in NAMD.
Comput Sci Discov. 2011;4(1). doi: 10.1088/1749-4699/4/1/015002.
6
The expanding scope of antimicrobial peptide structures and their modes of action.
Trends Biotechnol. 2011 Sep;29(9):464-72. doi: 10.1016/j.tibtech.2011.05.001. Epub 2011 Jun 15.
7
Molecular dynamics studies of transportan 10 (tp10) interacting with a POPC lipid bilayer.
J Phys Chem B. 2011 Feb 10;115(5):1188-98. doi: 10.1021/jp107763b. Epub 2010 Dec 31.
8
A series of PDB related databases for everyday needs.
Nucleic Acids Res. 2011 Jan;39(Database issue):D411-9. doi: 10.1093/nar/gkq1105. Epub 2010 Nov 11.
9
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验