Suppr超能文献

蜂毒肽自发穿透细胞膜后的构象。

Organizations of melittin peptides after spontaneous penetration into cell membranes.

机构信息

Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China.

Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China.

出版信息

Biophys J. 2022 Nov 15;121(22):4368-4381. doi: 10.1016/j.bpj.2022.10.002. Epub 2022 Oct 4.

Abstract

The antimicrobial peptide, melittin, is a potential next-generation antibiotic because melittin can spontaneously form pores in bacterial cell membranes and cause cytoplasm leakage. However, the organizations of melittin peptides in cell membranes remain elusive, which impedes the understanding of the poration mechanism. In this work, we use coarse-grained and all-atom molecular dynamics (MD) simulations to investigate the organizations of melittin peptides during and after spontaneous penetration into DPPC/POPG lipid bilayers. We find that the peptides in lipid bilayers adopt either a transmembrane conformation or a U-shaped conformation, which are referred to as T- and U-peptides, respectively. Several U-peptides and/or T-peptides aggregate to form stable pores. We analyze a T-pore consisting of four T-peptides and a U-pore consisting of three U-peptides and one T-peptide. In both pores, peptides are organized in a manner such that polar residues face inward and hydrophobic residues face outward, which stabilizes the pores and produces water channels. Compared with the U-pore, the T-pore has lower energy, larger pore diameter, and higher permeability. However, the T-pore occurs less frequently than the U-pore in our simulations, probably because the formation of the T-pore is kinetically slower than the U-pore. The stability and permeability of both pores are confirmed by 300 ns all-atom MD simulations. The peptide organizations obtained in this work should deepen the understanding of the stability, poration mechanism, and permeability of melittin, and facilitate the optimization of melittin to enhance the antibacterial ability.

摘要

抗菌肽蜂毒素是一种有潜力的下一代抗生素,因为蜂毒素可以在细菌细胞膜上自发形成孔道,导致细胞质泄漏。然而,蜂毒素肽在细胞膜中的组织形式仍不清楚,这阻碍了对穿孔机制的理解。在这项工作中,我们使用粗粒化和全原子分子动力学(MD)模拟来研究蜂毒素肽在自发渗透进入 DPPC/POPG 脂质双层过程中和之后的组织形式。我们发现,肽在脂质双层中采用跨膜构象或 U 形构象,分别称为 T-肽和 U-肽。一些 U-肽和/或 T-肽聚集形成稳定的孔道。我们分析了一个由四个 T-肽组成的 T-孔和一个由三个 U-肽和一个 T-肽组成的 U-孔。在这两种孔道中,肽以一种极性残基朝向孔内,疏水性残基朝向孔外的方式排列,这种方式稳定了孔道并产生了水通道。与 U-孔相比,T-孔具有更低的能量、更大的孔径和更高的通透性。然而,与 U-孔相比,T-孔在我们的模拟中出现的频率较低,可能是因为 T-孔的形成动力学比 U-孔慢。两种孔道的稳定性和通透性都通过 300ns 的全原子 MD 模拟得到了证实。本工作中获得的肽组织形式应该加深对蜂毒素稳定性、穿孔机制和通透性的理解,并有助于优化蜂毒素以增强其抗菌能力。

相似文献

1
Organizations of melittin peptides after spontaneous penetration into cell membranes.蜂毒肽自发穿透细胞膜后的构象。
Biophys J. 2022 Nov 15;121(22):4368-4381. doi: 10.1016/j.bpj.2022.10.002. Epub 2022 Oct 4.
6
Toroidal pores formed by antimicrobial peptides show significant disorder.由抗菌肽形成的环形孔表现出显著的无序性。
Biochim Biophys Acta. 2008 Oct;1778(10):2308-17. doi: 10.1016/j.bbamem.2008.06.007. Epub 2008 Jun 18.
8
The structure of a melittin-stabilized pore.蜂毒肽稳定孔道的结构。
Biophys J. 2015 May 19;108(10):2424-2426. doi: 10.1016/j.bpj.2015.04.006.
9
Process of inducing pores in membranes by melittin.蜂毒素致孔过程。
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14243-8. doi: 10.1073/pnas.1307010110. Epub 2013 Aug 12.

引用本文的文献

4
Bee Venom: Composition and Anticancer Properties.蜂毒:组成与抗癌特性。
Toxins (Basel). 2024 Feb 29;16(3):117. doi: 10.3390/toxins16030117.

本文引用的文献

6
Molecular details on the intermediate states of melittin action on a cell membrane.关于蜂毒素作用于细胞膜的中间状态的分子细节。
Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2234-2241. doi: 10.1016/j.bbamem.2018.09.007. Epub 2018 Sep 10.
10
How Does Melittin Permeabilize Membranes?蜂毒肽是如何使细胞膜通透的?
Biophys J. 2018 Jan 23;114(2):251-253. doi: 10.1016/j.bpj.2017.11.3738.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验