Suppr超能文献

噬菌体 T4 溶菌抑制的蛋白决定簇。

Protein determinants of phage T4 lysis inhibition.

机构信息

Center for Phage Technology, Texas A&M University, College Station, Texas 77843-2128, USA.

出版信息

Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2.

Abstract

Genetic studies have established that lysis inhibition in bacteriophage T4 infections occurs when the RI antiholin inhibits the lethal hole-forming function of the T holin. The T-holin is composed of a single N-terminal transmembrane domain and a ~20 kDa periplasmic domain. It accumulates harmlessly throughout the bacteriophage infection cycle until suddenly causing permeabilization of the inner membrane, thereby initiating lysis. The RI antiholin has a SAR domain that directs its secretion to the periplasm, where it can either be inactivated and degraded or be activated as a specific inhibitor of T. Previously, it was shown that the interaction of the soluble domains of these two proteins within the periplasm was necessary for lysis inhibition. We have purified and characterized the periplasmic domains of both T and RI. Both proteins were purified in a modified host that allows disulfide bond formation in the cytoplasm, due to the functional requirement of conserved disulfide bonds. Analytical centrifugation and circular dichroism spectroscopy showed that RI was monomeric and exhibited ~80% alpha-helical content. In contrast, T exhibited a propensity to oligomerize and precipitate at high concentrations. Incubation of RI with T inhibits this aggregation and results in a complex of equimolar T and RI content. Although gel filtration analysis indicated a complex mass of 45 kDa, intermediate between the predicted 30 kDa heterodimer and 60 kDa heterotetramer, sedimentation velocity analysis indicated that the predominant species is the former. These results suggest that RI binding to T is necessary and sufficient for lysis inhibition.

摘要

遗传研究表明,噬菌体 T4 感染中的裂解抑制发生在 RI 抗毒素抑制 T 毒素的致死孔形成功能时。T 毒素由单个 N 端跨膜结构域和一个20 kDa 的周质域组成。它在噬菌体感染周期中无害地积累,直到突然导致内膜通透性,从而引发裂解。RI 抗毒素具有 SAR 结构域,可将其分泌到周质中,在那里它可以被失活和降解,或者被激活为 T 的特异性抑制剂。先前的研究表明,这两种蛋白质的可溶性结构域在周质中的相互作用对于裂解抑制是必需的。我们已经纯化并表征了 T 和 RI 的周质域。由于保守的二硫键的功能要求,这两种蛋白质都是在允许在细胞质中形成二硫键的改良宿主中纯化的。分析离心和圆二色性光谱表明,RI 是单体,具有80%的α-螺旋含量。相比之下,T 表现出聚合和沉淀的倾向,尤其是在高浓度下。RI 与 T 孵育可抑制这种聚集,并形成等摩尔的 T 和 RI 含量的复合物。尽管凝胶过滤分析表明复合物的质量为 45 kDa,介于预测的 30 kDa 异二聚体和 60 kDa 异四聚体之间,但沉降速度分析表明主要物种是前者。这些结果表明,RI 与 T 的结合对于裂解抑制是必要和充分的。

相似文献

1
Protein determinants of phage T4 lysis inhibition.
Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2.
2
Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition.
J Bacteriol. 2005 Oct;187(19):6631-40. doi: 10.1128/JB.187.19.6631-6640.2005.
3
The Last r Locus Unveiled: T4 RIII Is a Cytoplasmic Antiholin.
J Bacteriol. 2016 Aug 25;198(18):2448-57. doi: 10.1128/JB.00294-16. Print 2016 Sep 15.
4
Genetic dissection of T4 lysis.
J Bacteriol. 2014 Jun;196(12):2201-9. doi: 10.1128/JB.01548-14. Epub 2014 Apr 4.
5
An ancient player unmasked: T4 rI encodes a t-specific antiholin.
Mol Microbiol. 2001 Aug;41(3):575-83. doi: 10.1046/j.1365-2958.2001.02491.x.
6
A dimeric holin/antiholin complex controls lysis by phage T4.
Front Microbiol. 2024 Sep 5;15:1419106. doi: 10.3389/fmicb.2024.1419106. eCollection 2024.
7
A role for accessory genes rI.-1 and rI.1 in the regulation of lysis inhibition by bacteriophage T4.
Virus Genes. 2010 Dec;41(3):459-68. doi: 10.1007/s11262-010-0532-1. Epub 2010 Oct 14.
8
The Structural Basis of T4 Phage Lysis Control: DNA as the Signal for Lysis Inhibition.
J Mol Biol. 2020 Jul 24;432(16):4623-4636. doi: 10.1016/j.jmb.2020.06.013. Epub 2020 Jun 17.
9
The T4 RI antiholin has an N-terminal signal anchor release domain that targets it for degradation by DegP.
J Bacteriol. 2007 Nov;189(21):7618-25. doi: 10.1128/JB.00854-07. Epub 2007 Aug 10.
10
The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain.
Front Microbiol. 2021 Aug 11;12:712460. doi: 10.3389/fmicb.2021.712460. eCollection 2021.

引用本文的文献

2
A dimeric holin/antiholin complex controls lysis by phage T4.
Front Microbiol. 2024 Sep 5;15:1419106. doi: 10.3389/fmicb.2024.1419106. eCollection 2024.
3
Automating Predictive Phage Therapy Pharmacology.
Antibiotics (Basel). 2023 Sep 8;12(9):1423. doi: 10.3390/antibiotics12091423.
6
The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain.
Front Microbiol. 2021 Aug 11;12:712460. doi: 10.3389/fmicb.2021.712460. eCollection 2021.
7
Structure and Function of the T4 Spackle Protein Gp61.3.
Viruses. 2020 Sep 24;12(10):1070. doi: 10.3390/v12101070.
8
The Structural Basis of T4 Phage Lysis Control: DNA as the Signal for Lysis Inhibition.
J Mol Biol. 2020 Jul 24;432(16):4623-4636. doi: 10.1016/j.jmb.2020.06.013. Epub 2020 Jun 17.

本文引用的文献

1
Holin triggering in real time.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):798-803. doi: 10.1073/pnas.1011921108. Epub 2010 Dec 27.
3
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.
4
Thiol protection in membrane protein purifications: a study with phage holins.
Anal Biochem. 2009 Jul 15;390(2):221-3. doi: 10.1016/j.ab.2009.04.031. Epub 2009 May 3.
5
Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11933-8. doi: 10.1073/pnas.0804621105. Epub 2008 Aug 11.
7
Deamidation destabilizes and triggers aggregation of a lens protein, betaA3-crystallin.
Protein Sci. 2008 Sep;17(9):1565-75. doi: 10.1110/ps.035410.108. Epub 2008 Jun 20.
8
Evolutionary dominance of holin lysis systems derives from superior genetic malleability.
Microbiology (Reading). 2008 Jun;154(Pt 6):1710-1718. doi: 10.1099/mic.0.2008/016956-0.
9
K2D2: estimation of protein secondary structure from circular dichroism spectra.
BMC Struct Biol. 2008 May 13;8:25. doi: 10.1186/1472-6807-8-25.
10
The Jpred 3 secondary structure prediction server.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201. doi: 10.1093/nar/gkn238. Epub 2008 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验