Suppr超能文献

利用自适资源分配网络识别与阿尔茨海默病相关的脑区。

Identification of brain regions responsible for Alzheimer's disease using a Self-adaptive Resource Allocation Network.

机构信息

Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysore, India.

出版信息

Neural Netw. 2012 Aug;32:313-22. doi: 10.1016/j.neunet.2012.02.035. Epub 2012 Feb 16.

Abstract

In this paper, we present a novel approach for the identification of brain regions responsible for Alzheimer's disease using the Magnetic Resonance (MR) images. The approach incorporates the recently developed Self-adaptive Resource Allocation Network (SRAN) for Alzheimer's disease classification using voxel-based morphometric features of MR images. SRAN classifier uses a sequential learning algorithm, employing self-adaptive thresholds to select the appropriate training samples and discard redundant samples to prevent over-training. These selected training samples are then used to evolve the network architecture efficiently. Since, the number of features extracted from the MR images is large, a feature selection scheme (to reduce the number of features needed) using an Integer-Coded Genetic Algorithm (ICGA) in conjunction with the SRAN classifier (referred to here as the ICGA-SRAN classifier) have been developed. In this study, different healthy/Alzheimer's disease patient's MR images from the Open Access Series of Imaging Studies data set have been used for the performance evaluation of the proposed ICGA-SRAN classifier. We have also compared the results of the ICGA-SRAN classifier with the well-known Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers. The study results clearly show that the ICGA-SRAN classifier produces a better generalization performance with a smaller number of features, lower misclassification rate and a compact network. The ICGA-SRAN selected features clearly indicate that the variations in the gray matter volume in the parahippocampal gyrus and amygdala brain regions may be good indicators of the onset of Alzheimer's disease in normal persons.

摘要

在本文中,我们提出了一种使用磁共振(MR)图像识别阿尔茨海默病相关脑区的新方法。该方法结合了最近开发的自适应资源分配网络(SRAN),用于使用基于体素的形态计量学特征对阿尔茨海默病进行分类。SRAN 分类器采用顺序学习算法,使用自适应阈值选择适当的训练样本,并丢弃冗余样本以防止过度训练。然后,使用这些选择的训练样本有效地进化网络架构。由于从 MR 图像中提取的特征数量很大,因此开发了一种特征选择方案(通过减少所需特征的数量),该方案使用整数编码遗传算法(ICGA)与 SRAN 分类器(此处称为 ICGA-SRAN 分类器)结合使用。在这项研究中,来自开放获取成像研究数据集的不同健康/阿尔茨海默病患者的 MR 图像已用于评估所提出的 ICGA-SRAN 分类器的性能。我们还将 ICGA-SRAN 分类器的结果与著名的支持向量机(SVM)和极限学习机(ELM)分类器进行了比较。研究结果清楚地表明,ICGA-SRAN 分类器使用较少的特征、较低的错误分类率和更紧凑的网络产生了更好的泛化性能。ICGA-SRAN 选择的特征清楚地表明,海马旁回和杏仁核脑区灰质体积的变化可能是正常人阿尔茨海默病发病的良好指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验