Suppr超能文献

用空气阴极微生物燃料电池增强降解和发电来实现五氯苯酚的矿化。

Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells.

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

出版信息

Biotechnol Bioeng. 2012 Sep;109(9):2211-21. doi: 10.1002/bit.24489. Epub 2012 Mar 22.

Abstract

The combined anaerobic-aerobic conditions in air-cathode single-chamber MFCs were used to completely mineralize pentachlorophenol (PCP; 5 mg/L), in the presence of acetate or glucose. Degradation rates of 0.140 ± 0.011 mg/L-h (acetate) and 0.117 ± 0.009 mg/L-h (glucose) were obtained with maximum power densities of 7.7 ± 1.1 W/m(3) (264 ± 39 W/m(2), acetate) and 5.1 ± 0.1 W/m(3) (175 ± 5 W/m(2), glucose). At a higher PCP concentration of 15 mg/L, PCP degradation rates increased to 0.171 ± 0.01 mg/L-h (acetate) and 0.159 ± 0.011 mg/L-h (glucose). However, power was inversely proportional to initial PCP concentration, with decreases of 0.255 W/mg PCP (acetate) and 0.184 W/mg PCP (glucose). High pH (9.0, acetate; 8.0, glucose) was beneficial to exoelectrogenic activities and power generation, whereas an acidic pH = 5.0 decreased power but increased PCP degradation rates (0.195 ± 0.002 mg/L-h, acetate; 0.173 ± 0.005 mg/L-h, glucose). Increasing temperature from 22 to 35°C enhanced power production by 37% (glucose) to 70% (acetate), and PCP degradation rates (0.188 ± 0.01 mg/L-h, acetate; 0.172 ± 0.009 mg/L-h, glucose). Dominant exoelectrogens of Pseudomonas (acetate) and Klebsiella (glucose) were identified in the biofilms. These results demonstrate that PCP degradation using air-cathode single-chamber MFCs may be a promising process for remediation of water contaminated with PCP as well as for power generation.

摘要

在空气阴极单室 MFC 中采用的厌氧-好氧条件下,在乙酸盐或葡萄糖存在的情况下,完全矿化五氯苯酚(PCP;5mg/L)。以乙酸盐获得的降解速率为 0.140±0.011mg/L-h(乙酸盐)和 0.117±0.009mg/L-h(葡萄糖),最大功率密度为 7.7±1.1W/m3(264±39W/m2,乙酸盐)和 5.1±0.1W/m3(175±5W/m2,葡萄糖)。在较高的 15mg/LPCP 浓度下,PCP 降解速率增加至 0.171±0.01mg/L-h(乙酸盐)和 0.159±0.011mg/L-h(葡萄糖)。然而,功率与初始 PCP 浓度成反比,乙酸盐下降 0.255W/mgPCP,葡萄糖下降 0.184W/mgPCP。高 pH 值(乙酸盐为 9.0,葡萄糖为 8.0)有利于放电子体的活动和发电,而酸性 pH 值=5.0 降低了功率,但增加了 PCP 降解速率(乙酸盐为 0.195±0.002mg/L-h,葡萄糖为 0.173±0.005mg/L-h)。将温度从 22°C 升高至 35°C 使葡萄糖的产电功率提高了 37%(葡萄糖)至 70%(乙酸盐),PCP 降解速率(乙酸盐为 0.188±0.01mg/L-h,葡萄糖为 0.172±0.009mg/L-h)。在生物膜中鉴定出了假单胞菌(乙酸盐)和克雷伯氏菌(葡萄糖)等优势脱电子体。这些结果表明,使用空气阴极单室 MFC 降解 PCP 可能是一种很有前途的修复被 PCP 污染的水以及发电的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验