Suppr超能文献

在最佳电势下形成的生物阳极/生物阴极可增强微生物燃料电池后续五氯苯酚的降解和发电。

Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells.

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

出版信息

Bioelectrochemistry. 2013 Dec;94:13-22. doi: 10.1016/j.bioelechem.2013.05.001. Epub 2013 May 22.

Abstract

Bioanodes formed at an optimal potential of 200 mV vs. SHE and biocathodes developed at -300 mV vs. SHE in bioelectrochemical cells (BECs) enhanced the subsequent performances of microbial fuel cells (MFCs) compared to the un-treated controls. While the startup times were reduced to 320 h (bioanodes) and 420-440 h (biocathodes), PCP degradation rates were improved by 28.5% (bioanodes) and 21.5% (biocathodes), and power production by 41.7% (bioanodes) and 44% (biocathodes). Accordingly, there were less accumulated products of PCP de-chlorination in the biocathodes whereas PCP in the bioanodes was more efficiently de-chlorinated, resulting in the formation of a new product of 3,4,5-trichlorophenol (24.3 ± 2.2 μM at 96 h). Charges were diverted to more generation of electricity in the bioanodes at 200 mV while oxygen in the biocathodes at -300 mV acted as a primary electron acceptor. Dominant bacteria known as recalcitrant organic degraders and/or exoelectrogens/electrotrophs included Desulfovibrio carbinoliphilus and Dechlorospirillum sp. on the bioanodes at 200 mV, and Desulfovibrio marrakechensis, Comamonas testosteroni and Comamonas sp. on the biocathodes at -300 mV. These results demonstrated that an optimal potential was a feasible approach for developing both bioanodes and biocathodes for efficient PCP degradation and power generation from MFCs.

摘要

在生物电化学电池(BEC)中,与 SHE 相比,生物阳极在 200 mV 的最佳电势下形成,生物阴极在-300 mV 的电势下形成,这提高了随后微生物燃料电池(MFC)的性能,与未经处理的对照相比。虽然启动时间缩短至 320 h(生物阳极)和 420-440 h(生物阴极),但 PCP 的降解率提高了 28.5%(生物阳极)和 21.5%(生物阴极),产电量提高了 41.7%(生物阳极)和 44%(生物阴极)。因此,生物阴极中 PCP 脱氯的累积产物减少,而生物阳极中 PCP 更有效地脱氯,形成了一种新的产物 3,4,5-三氯苯酚(96 h 时为 24.3±2.2 μM)。在 200 mV 的生物阳极中,电荷被转移到更多的电量产生,而在-300 mV 的生物阴极中,氧气作为主要的电子受体。在 200 mV 的生物阳极中,已知的主要细菌是难降解有机降解菌和/或外电子供体/电养菌,包括脱硫弧菌和脱氯螺旋菌。在-300 mV 的生物阴极中,主要细菌是脱硫弧菌、睾酮单胞菌和粪产碱杆菌。这些结果表明,最佳电势是开发生物阳极和生物阴极以实现从 MFC 中高效降解 PCP 和发电的一种可行方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验