McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Neuroimage. 2012 May 1;60(4):2357-64. doi: 10.1016/j.neuroimage.2012.02.055. Epub 2012 Mar 3.
In a widely used functional magnetic resonance imaging (fMRI) data analysis method, functional regions of interest (fROIs) are handpicked in each participant using macroanatomic landmarks as guides, and the response of these regions to new conditions is then measured. A key limitation of this standard handpicked fROI method is the subjectivity of decisions about which clusters of activated voxels should be treated as the particular fROI in question in each subject. Here we apply the Group-Constrained Subject-Specific (GSS) method for defining fROIs, recently developed for identifying language fROIs (Fedorenko et al., 2010), to algorithmically identify fourteen well-studied category-selective regions of the ventral visual pathway (Kanwisher, 2010). We show that this method retains the benefit of defining fROIs in individual subjects without the subjectivity inherent in the traditional handpicked fROI approach. The tools necessary for using this method are available on our website (http://web.mit.edu/bcs/nklab/GSS.shtml).
在一种广泛应用的功能磁共振成像(fMRI)数据分析方法中,使用宏观解剖学标记作为指导,在每个参与者中手动选择功能感兴趣区(fROI),然后测量这些区域对新条件的反应。这种标准的手动选择 fROI 方法的一个主要局限性是,关于应该将哪些激活体素聚类视为每个受试者中特定 fROI 的决策存在主观性。在这里,我们应用了最近为识别语言 fROI(Fedorenko 等人,2010)而开发的 Group-Constrained Subject-Specific(GSS)方法,以算法方式识别腹侧视觉通路中十四个经过充分研究的类别选择性区域(Kanwisher,2010)。我们表明,该方法在保留在个体受试者中定义 fROI 的优势的同时,避免了传统手动选择 fROI 方法所固有的主观性。使用这种方法所需的工具可在我们的网站上获得(http://web.mit.edu/bcs/nklab/GSS.shtml)。