Suppr超能文献

一种用于识别个体特异性感兴趣功能区域的多图谱标记方法。

A Multi-Atlas Labeling Approach for Identifying Subject-Specific Functional Regions of Interest.

作者信息

Huang Lijie, Zhou Guangfu, Liu Zhaoguo, Dang Xiaobin, Yang Zetian, Kong Xiang-Zhen, Wang Xu, Song Yiying, Zhen Zonglei, Liu Jia

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.

Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing, 100875, China.

出版信息

PLoS One. 2016 Jan 21;11(1):e0146868. doi: 10.1371/journal.pone.0146868. eCollection 2016.

Abstract

The functional region of interest (fROI) approach has increasingly become a favored methodology in functional magnetic resonance imaging (fMRI) because it can circumvent inter-subject anatomical and functional variability, and thus increase the sensitivity and functional resolution of fMRI analyses. The standard fROI method requires human experts to meticulously examine and identify subject-specific fROIs within activation clusters. This process is time-consuming and heavily dependent on experts' knowledge. Several algorithmic approaches have been proposed for identifying subject-specific fROIs; however, these approaches cannot easily incorporate prior knowledge of inter-subject variability. In the present study, we improved the multi-atlas labeling approach for defining subject-specific fROIs. In particular, we used a classifier-based atlas-encoding scheme and an atlas selection procedure to account for the large spatial variability across subjects. Using a functional atlas database for face recognition, we showed that with these two features, our approach efficiently circumvented inter-subject anatomical and functional variability and thus improved labeling accuracy. Moreover, in comparison with a single-atlas approach, our multi-atlas labeling approach showed better performance in identifying subject-specific fROIs.

摘要

感兴趣功能区(fROI)方法在功能磁共振成像(fMRI)中越来越成为一种受欢迎的方法,因为它可以规避个体间的解剖和功能变异性,从而提高fMRI分析的敏感性和功能分辨率。标准的fROI方法需要人类专家仔细检查并在激活簇内识别个体特异性的fROI。这个过程既耗时又严重依赖专家的知识。已经提出了几种算法方法来识别个体特异性的fROI;然而,这些方法不容易纳入个体间变异性的先验知识。在本研究中,我们改进了用于定义个体特异性fROI的多图谱标记方法。特别是,我们使用了基于分类器的图谱编码方案和图谱选择程序来考虑个体间的大空间变异性。使用用于人脸识别的功能图谱数据库,我们表明通过这两个特征,我们的方法有效地规避了个体间的解剖和功能变异性,从而提高了标记准确性。此外,与单图谱方法相比,我们的多图谱标记方法在识别个体特异性fROI方面表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc8/4721956/b4c11ee675e6/pone.0146868.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验