Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA.
Adv Exp Med Biol. 2012;725:86-105. doi: 10.1007/978-1-4614-0659-4_6.
Surprisingly few transcription factors drive animal development relative to the number and diversity of final tissues and body structures. Therefore, most transcription factors must function in more than one tissue. In a famous example, members of the Hox transcription factor family are expressed in contiguous stripes along the anterior/posterior axis during animal development. Individual Hox transcription factors specify all tissues within their expression domain and thus must respond to cellular cues to instigate the correct tissue-specific gene regulatory cascade. We describe how, in the Drosophila Hox protein Ultrabithorax, intrinsically disordered regions implement, regulate and co-ordinate multiple functions, potentially enabling context-specific gene regulation. The large N-terminal disordered domain encodes most of the transcription activation domain and directly impacts DNA binding affinity by the Ubx homeodomain. Similarly, the C-terminal disordered domain alters DNA binding affinity and specificity, interaction with a Hox binding protein and strongly influences both transcription activation and repression. Phosphorylation of the N-terminal disordered domain and alternative splicing of the C-terminal disordered domain could allow the cell to both regulate and co-ordinate DNA binding, protein interactions and transcription regulation. For regulatory mechanisms relying on disorder to continue to be available when Ubx is bound to other proteins or DNA, fuzziness would need to be preserved in these macromolecular complexes. The intrinsically disordered domains in Hox proteins are predicted to be on the very dynamic end of the disorder spectrum, potentially allowing disorder to persist when Ubx is bound to proteins or DNA to regulate the function of these "fuzzy" complexes. Because both intrinsically disordered regions within Ubx have multiple roles, each region may implement several different regulatory mechanisms identified in fuzzy complexes. These intrinsic disorder-based regulatory mechanisms are likely to be critical for allowing Ubx to sense tissue identity and respond by implementing a context-specific gene regulatory cascade.
令人惊讶的是,相对于最终组织和身体结构的数量和多样性,驱动动物发育的转录因子相对较少。因此,大多数转录因子必须在多种组织中发挥作用。在一个著名的例子中,Hox 转录因子家族的成员在动物发育过程中沿前后轴以连续条纹的形式表达。单个 Hox 转录因子在其表达域内指定所有组织,因此必须对细胞信号做出反应,启动正确的组织特异性基因调控级联。我们描述了在果蝇 Hox 蛋白 Ultrabithorax 中,无规卷曲区域如何实现、调节和协调多种功能,从而可能实现特定于上下文的基因调控。大的 N 端无规卷曲区域编码大部分转录激活域,并直接通过 Ubx 同源域影响 DNA 结合亲和力。同样,C 端无规卷曲区域改变 DNA 结合亲和力和特异性,与 Hox 结合蛋白相互作用,并强烈影响转录激活和抑制。N 端无规卷曲区域的磷酸化和 C 端无规卷曲区域的选择性剪接可以使细胞既能调节又能协调 DNA 结合、蛋白质相互作用和转录调控。对于依赖于无规卷曲来继续在 Ubx 与其他蛋白质或 DNA 结合时可用的调控机制,在这些大分子复合物中需要保留模糊性。Hox 蛋白中的无规卷曲区域预计处于无规卷曲谱的非常动态端,当 Ubx 与蛋白质或 DNA 结合以调节这些“模糊”复合物的功能时,无规卷曲可能会持续存在。由于 Ubx 中的两个无规卷曲区域都有多个作用,每个区域都可能实现模糊复合物中鉴定的几种不同的调控机制。这些基于无规卷曲的调控机制对于允许 Ubx 感知组织身份并通过实施特定于上下文的基因调控级联做出反应可能是至关重要的。