Department of Biology, University of Iowa, Iowa City, Iowa, USA.
Adv Exp Med Biol. 2012;739:173-86. doi: 10.1007/978-1-4614-1704-0_11.
We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia's mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane. Another important step in the evolution of an auditory system was the evolution of a unique set of "auditory neurons" that apparently evolved from vestibular neurons. Evolution of mammalian auditory (spiral ganglion) neurons coincides with GATA3 being a transcription factor found selectively in the auditory afferents. For the auditory information to be processed, the CNS required a dedicated center for auditory processing, the auditory nuclei. It is not known whether the auditory nucleus is ontogenetically related to the vestibular or electroreceptive nuclei, two sensory systems found in aquatic but not in amniotic vertebrates, or a de-novo formation of the rhombic lip in line with other novel hindbrain structures such as pontine nuclei. Like other novel hindbrain structures, the auditory nuclei express exclusively the bHLH gene Atoh1, and loss of Atoh1 results in loss of most of this nucleus in mice. Only after the basilar papilla, organ of Corti evolved could efferent neurons begin to modulate their activity. These auditory efferents most likely evolved from vestibular efferent neurons already present. The most simplistic interpretation of available data suggest that the ear, sensory neurons, auditory nucleus, and efferent neurons have been transformed by altering the developmental genetic modules necessary for their development into a novel direction conducive for sound extraction, conduction, and processing.
我们回顾了听觉发育和进化的分子基础。我们提出,听觉外围(基底膜,柯蒂氏器)是通过将新创建的和冗余的前庭(重定位)终末器官转化为能够响应声音而不是重力的感觉上皮而进化而来的。进化通过改变毛细胞改变了这个新上皮的机械感受特性,将上皮定位在靠近外淋巴间隙的独特位置,以提取在圆窗和卵圆窗之间移动的声音,并将其耳石覆盖物转化为鼓膜。听觉系统进化的另一个重要步骤是进化出一组独特的“听觉神经元”,这些神经元显然是从前庭神经元进化而来的。哺乳动物听觉(螺旋神经节)神经元的进化与 GATA3 作为一种转录因子选择性地存在于听觉传入有关。为了处理听觉信息,中枢神经系统需要一个专门的听觉处理中心,即听觉核。目前尚不清楚听觉核是否与前庭或电感受器核发生了胚胎发生关系,这两个感觉系统存在于水生动物中,但不存在于羊膜脊椎动物中,或者是否与其他新的后脑结构(如桥脑核)一起从头形成菱形唇。与其他新的后脑结构一样,听觉核仅表达 bHLH 基因 Atoh1,如果在小鼠中缺失 Atoh1,则会导致大部分核缺失。只有在基底膜和柯蒂氏器进化之后,传出神经元才能开始调节它们的活动。这些听觉传出神经元很可能是从已经存在的前庭传出神经元进化而来的。现有数据的最简单解释表明,耳朵、感觉神经元、听觉核和传出神经元已经通过改变其发育所需的发育遗传模块,朝着有利于声音提取、传导和处理的新方向进行了转化。