Suppr超能文献

耗散随机系统中的经典轨道磁矩。

Classical orbital magnetic moment in a dissipative stochastic system.

作者信息

Kumar N

机构信息

Raman Research Institute, Bangalore 560080, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011114. doi: 10.1103/PhysRevE.85.011114. Epub 2012 Jan 9.

Abstract

We present an analytical treatment of the dissipative-stochastic dynamics of a charged classical particle confined biharmonically in a plane with a uniform static magnetic field directed perpendicular to the plane. The stochastic dynamics gives a steady state in the long-time limit. We have examined the orbital magnetic effect of introducing a parametrized deviation (η-1) from the second fluctuation-dissipation relation that connects the driving noise and the frictional memory kernel in the standard Langevin dynamics. The main result obtained here is that the moving charged particle generates a finite orbital magnetic moment in the steady state, and that the moment shows a crossover from para- to diamagnetic sign as the parameter η is varied. It is zero for η=1 that makes the steady state correspond to equilibrium, as it should. The magnitude of the orbital magnetic moment turns out to be a nonmonotonic function of the applied magnetic field, tending to zero in the limit of an infinitely large as well as an infinitesimally small magnetic field. These results are discussed in the context of the classic Bohr-van Leeuwen theorem on the absence of classical orbital diamagnetism. Possible realization is also briefly discussed.

摘要

我们给出了一个带电经典粒子耗散 - 随机动力学的解析处理,该粒子在垂直于平面的均匀静态磁场作用下,被双调和地限制在一个平面内。随机动力学在长时间极限下给出一个稳态。我们研究了在标准朗之万动力学中引入与驱动噪声和摩擦记忆核相关的第二个涨落 - 耗散关系的参数化偏差(η - 1)的轨道磁效应。这里得到的主要结果是,运动的带电粒子在稳态下产生一个有限的轨道磁矩,并且当参数η变化时,该磁矩表现出从顺磁到抗磁符号的转变。对于η = 1,它为零,这使得稳态对应于平衡态,正如所应的那样。轨道磁矩的大小结果是所施加磁场的非单调函数,在无限大以及无限小磁场的极限情况下趋于零。这些结果在关于经典轨道抗磁性不存在的经典玻尔 - 范·列文定理的背景下进行了讨论。还简要讨论了可能的实现方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验