Knufinke M, Ilin K, Siegel M, Koelle D, Kleiner R, Goldobin E
Physikalisches Institut-Experimentalphysik II and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011122. doi: 10.1103/PhysRevE.85.011122. Epub 2012 Jan 13.
We investigate experimentally a deterministic underdamped Josephson vortex ratchet-a fluxon particle moving along a Josephson junction in an asymmetric periodic potential. By applying a sinusoidal driving current, one can compel the vortex to move in a certain direction, producing an average dc voltage across the junction. Being in such a rectification regime, we also load the ratchet, i.e., apply an additional dc bias current I(dc) (counterforce) which tilts the potential so that the fluxon climbs uphill due to the ratchet effect. The value of the bias current at which the fluxon stops climbing up defines the strength of the ratchet effect and is determined experimentally. This allows us to estimate the loading capability of the ratchet, the output power, and the efficiency. For the quasistatic regime we present a simple model which delivers straightforward analytic expressions for the above-mentioned figures of merit.
我们通过实验研究了确定性欠阻尼约瑟夫森涡旋棘轮——一个磁通子粒子在非对称周期势中沿约瑟夫森结移动。通过施加正弦驱动电流,可以迫使涡旋沿特定方向移动,从而在结两端产生平均直流电压。处于这种整流状态时,我们还对棘轮加载,即施加一个额外的直流偏置电流I(dc)(反作用力),该电流使势倾斜,从而使磁通子由于棘轮效应向上爬坡。磁通子停止向上爬坡时的偏置电流值定义了棘轮效应的强度,并通过实验确定。这使我们能够估计棘轮的加载能力、输出功率和效率。对于准静态状态,我们提出了一个简单模型,该模型给出了上述品质因数的直接解析表达式。