Elliott Drew, Vasquez Desiderio A
Department of Physics, Indiana University Purdue University Fort Wayne, Fort Wayne, Indiana 46805, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):016207. doi: 10.1103/PhysRevE.85.016207. Epub 2012 Jan 18.
Density gradients across a reaction front can lead to convective fluid motion. Stable fronts require a heavier fluid on top of a lighter one to generate convective fluid motion. On the other hand, unstable fronts can be stabilized with an opposing density gradient, where the lighter fluid is on top. In this case, we can have a stable flat front without convection or a steady convective front of a given wavelength near the onset of convection. The fronts are described with the Kuramoto-Sivashinsky equation coupled to hydrodynamics governed by Darcy's law. We obtain a dispersion relation between growth rates and perturbation wave numbers in the presence of a density discontinuity accross the front. We also analyze the effects of this density change in the transition to chaos.
反应前沿的密度梯度可导致对流流体运动。稳定的前沿需要较重的流体位于较轻的流体之上,以产生对流流体运动。另一方面,不稳定的前沿可通过相反的密度梯度来稳定,即较轻的流体位于顶部。在这种情况下,我们可以有一个没有对流的稳定平面前沿,或者在对流开始附近有一个给定波长的稳定对流前沿。这些前沿由与受达西定律支配的流体动力学耦合的Kuramoto-Sivashinsky方程描述。我们得到了在前沿存在密度不连续的情况下增长率与扰动波数之间的色散关系。我们还分析了这种密度变化在向混沌转变过程中的影响。