Suppr超能文献

由Kuramoto-Sivashinsky方程描述的稳定前沿的瑞利-泰勒不稳定性。

Rayleigh-Taylor instability of steady fronts described by the Kuramoto-Sivashinsky equation.

作者信息

Vilela P M, Vasquez Desiderio A

机构信息

Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú Av. Universitaria 1801, San Miguel, Lima 32, Peru.

出版信息

Chaos. 2014 Jun;24(2):023135. doi: 10.1063/1.4883500.

Abstract

We study steady thin reaction fronts described by the Kuramoto-Sivashinsky equation that separates fluids of different densities. This system may lead to hydrodynamic instabilities as buoyancy forces interact with the propagating fronts in a two-dimensional slab. We use Darcy's law to describe the fluid motion in this geometry. Steady front profiles can be flat, axisymmetric, or nonaxisymmetric, depending on the slab width, the density gradient, and fluid viscosity. Unstable flat fronts can be stabilized having a density gradient with the less dense fluid on top of a denser fluid. We find the steady front solutions from the nonlinear equations executing a linear stability analysis to determine their stability. We show regions of bistability where stable nonaxisymmetric and axisymmetric fronts can coexist. We also consider the stability of steady solutions in large domains, which can be constructed by dividing the domain into smaller parts or cells.

摘要

我们研究由Kuramoto-Sivashinsky方程描述的稳定薄反应前沿,该前沿分隔了不同密度的流体。在二维平板中,当浮力与传播的前沿相互作用时,这个系统可能会导致流体动力学不稳定性。我们用达西定律来描述这种几何结构中的流体运动。稳定的前沿轮廓可以是平坦的、轴对称的或非轴对称的,这取决于平板宽度、密度梯度和流体粘度。不稳定的平坦前沿可以通过在较稠密流体之上存在密度梯度且较稀薄流体在顶部的方式来实现稳定。我们从执行线性稳定性分析的非线性方程中找到稳定前沿解,以确定它们的稳定性。我们展示了双稳区域,其中稳定的非轴对称和轴对称前沿可以共存。我们还考虑了大区域中稳定解的稳定性,大区域可以通过将区域划分为较小的部分或单元来构建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验