Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada.
J Chem Phys. 2012 Mar 7;136(9):094105. doi: 10.1063/1.3687922.
A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules.
提供了一种简单的电子通过分子输运模型,即源-汇势(SSP)方法[F. Goyer、M. Ernzerhof 和 M. Zhuang,J. Chem. Phys. 126, 144104 (2007)]。在 SSP 中,通过施加到哈密顿量上的复势来强制满足有输入和输出电子电流的边界条件。根据势的虚部的符号,会产生或吸收电流密度。通过这种方式,可以使用有限系统来模拟无限分子电子器件。SSP 最初是为 Hückel 方法开发的,随后[F. Goyer 和 M. Ernzerhof,J. Chem. Phys. 134, 174101 (2011)]将其扩展到 Hubbard 模型。在这里,我们朝着将其推广到第一性原理电子结构理论方法迈出了一步。特别是,借鉴我们早期的工作,我们讨论了一种用于复非厄米哈密顿量的新广义密度泛函理论。该理论使我们能够将 SSP 和 Kohn-Sham 理论结合起来,获得一种用于描述与环境交换电流密度的开系统的方法。同样,Hartree-Fock 方法也扩展到包含 SSP 的非厄米哈密顿量的领域。作为原理证明,我们首次将复密度泛函理论(CODFT)以及非厄米 Hartree-Fock 理论应用于分子中的电子输运。