Tsuchiya Tohru, Akimoto Seiji, Mizoguchi Tadashi, Watabe Kazuyuki, Kindo Hayato, Tomo Tatsuya, Tamiaki Hitoshi, Mimuro Mamoru
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
Biochim Biophys Acta. 2012 Aug;1817(8):1285-91. doi: 10.1016/j.bbabio.2012.02.021. Epub 2012 Feb 28.
Acaryochloris marina, a chlorophyll (Chl) d-dominated cyanobacterium, is a model organism for studying photosynthesis driven by far-red light using Chl d. Furthermore, studies on A. marina may provide insights into understanding how the oxygenic photosynthetic organisms adapt after the acquisition of new Chl. To solve the reaction mechanism of its unique photosynthesis, photosystem (PS) II complexes were isolated from A. marina and analyzed. However, the lack of a molecular genetic method for A. marina prevented us from conducting further studies. We recently developed a transformation system for A. marina and we introduced a chlorophyllide a oxygenase gene into A. marina. The resultant transformant accumulated [7-formyl]-Chl d, which has never been found in nature. In the current study, we isolated PS II complexes that contained [7-formyl]-Chl d. The pigment composition of the [7-formyl]-Chl d-containing PS II complexes was 1.96±0.04 Chl a, 53.21±1.00 Chl d, and 5.48±0.33 [7-formyl]-Chl d per two pheophytin a molecules. In contrast, the composition of the control PS II complexes was 2.01±0.06 Chl a and 62.96±2.49 Chl d. The steady-state fluorescence and excitation spectra of the PS II complexes revealed that energy transfer occurred from [7-formyl]-Chl d to the major Chl d species; however, the electron transfer was not affected by the presence of [7-formyl]-Chl d. These findings demonstrate that artificially produced [7-formyl]-Chl d molecules that are incorporated into PS II replace part of the Chl d molecules and function as the antenna. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
滨海嗜盐绿藻(Acaryochloris marina)是一种以叶绿素(Chl)d为主的蓝细菌,是利用Chl d研究远红光驱动光合作用的模式生物。此外,对滨海嗜盐绿藻的研究可能有助于深入了解产氧光合生物在获得新的叶绿素后是如何适应的。为了解决其独特光合作用的反应机制,从滨海嗜盐绿藻中分离并分析了光系统(PS)II复合物。然而,缺乏针对滨海嗜盐绿藻的分子遗传学方法阻碍了我们进行进一步的研究。我们最近开发了一种滨海嗜盐绿藻转化系统,并将叶绿素酸a加氧酶基因导入滨海嗜盐绿藻。所得转化体积累了自然界中从未发现过的[7-甲酰基]-Chl d。在本研究中,我们分离了含有[7-甲酰基]-Chl d的PS II复合物。每两个脱镁叶绿素a分子中,含[7-甲酰基]-Chl d的PS II复合物的色素组成为1.96±0.04 Chl a、53.21±1.00 Chl d和5.48±0.33 [7-甲酰基]-Chl d。相比之下,对照PS II复合物的组成为2.01±0.06 Chl a和62.96±2.49 Chl d。PS II复合物的稳态荧光和激发光谱表明,能量从[7-甲酰基]-Chl d转移到主要的Chl d种类;然而,电子转移不受[7-甲酰基]-Chl d存在的影响。这些发现表明,人工合成并掺入PS II的[7-甲酰基]-Chl d分子取代了部分Chl d分子并起到天线的作用。本文是名为“可持续性光合作用研究:从自然到人工”特刊的一部分。