Suppr超能文献

光和氧对海洋蓝细菌海栖热袍菌叶绿素d生物合成的影响

Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium Acaryochloris marina.

作者信息

Tsuzuki Yuki, Tsukatani Yusuke, Yamakawa Hisanori, Itoh Shigeru, Fujita Yuichi, Yamamoto Haruki

机构信息

Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan.

出版信息

Plants (Basel). 2022 Mar 29;11(7):915. doi: 10.3390/plants11070915.

Abstract

A marine cyanobacterium Acaryochloris marina synthesizes chlorophyll (Chl) d as a major Chl. Chl d has a formyl group at its C3 position instead of a vinyl group in Chl a. This modification allows Chl d to absorb far-red light addition to visible light, yet the enzyme catalyzing the formation of the C3-formyl group has not been identified. In this study, we focused on light and oxygen, the most important external factors in Chl biosynthesis, to investigate their effects on Chl d biosynthesis in A. marina. The amount of Chl d in heterotrophic dark-grown cells was comparable to that in light-grown cells, indicating that A. marina has a light-independent pathway for Chl d biosynthesis. Under anoxic conditions, the amount of Chl d increased with growth in light conditions; however, no growth was observed in dark conditions, indicating that A. marina synthesizes Chl d normally even under such “micro-oxic” conditions caused by endogenous oxygen production. Although the oxygen requirement for Chl d biosynthesis could not be confirmed, interestingly, accumulation of pheophorbide d was observed in anoxic and dark conditions, suggesting that Chl d degradation is induced by anaerobicity and darkness.

摘要

一种海洋蓝细菌——滨海无隔藻(Acaryochloris marina)合成叶绿素(Chl)d作为主要叶绿素。叶绿素d在其C3位置有一个甲酰基,而不是叶绿素a中的乙烯基。这种修饰使得叶绿素d除了能吸收可见光外,还能吸收远红光,然而,催化C3 - 甲酰基形成的酶尚未被鉴定出来。在本研究中,我们聚焦于光和氧气,这两个叶绿素生物合成中最重要的外部因素,以研究它们对滨海无隔藻叶绿素d生物合成的影响。在黑暗中异养生长的细胞中叶绿素d的含量与在光照下生长的细胞中的含量相当,这表明滨海无隔藻具有一条不依赖光的叶绿素d生物合成途径。在缺氧条件下,叶绿素d的含量随着光照条件下的生长而增加;然而,在黑暗条件下未观察到生长,这表明即使在由内源性氧气产生导致的这种“微氧”条件下,滨海无隔藻仍能正常合成叶绿素d。尽管无法确定叶绿素d生物合成对氧气的需求,但有趣的是,在缺氧和黑暗条件下观察到了脱镁叶绿素d的积累,这表明厌氧和黑暗会诱导叶绿素d的降解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cad/9003380/f01822707e16/plants-11-00915-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验