Suppr超能文献

蓝细菌中从S到M的荧光缓慢上升是由于从状态2到状态1的转变。

The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition.

作者信息

Kaňa Radek, Kotabová Eva, Komárek Ondřej, Sedivá Barbora, Papageorgiou George C, Prášil Ondřej

机构信息

Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic.

出版信息

Biochim Biophys Acta. 2012 Aug;1817(8):1237-47. doi: 10.1016/j.bbabio.2012.02.024. Epub 2012 Feb 28.

Abstract

In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

摘要

在暗适应的植物和藻类中,由于充分记录的光化学和非光化学过程,叶绿素a荧光在照射后1秒内达到峰值。在这里,我们表明蓝细菌中荧光上升速度慢得多(即所谓的“从S到M的上升”,持续数十秒)是由于从状态2到状态1的转变。这一点已特别针对聚球藻PCC6803进行了证明,使用其RpaC(-)突变体(锁定在状态1)及其保存在高渗悬浮液中的野生型细胞(锁定在状态2)。在这两种情况下,状态变化的抑制与从S到M的荧光上升的消失相关,证实了其与从状态2到状态1的转变有关。在几种蓝细菌菌株中观察到从S到M的上升,这支持了其一般生理相关性:聚球藻(PCC 7942、WH 5701)和固氮单细胞蓝细菌(蓝丝菌属ATCC 51142)。我们还在此表明,在丝状固氮蓝细菌念珠藻属(PCC 7120)中,从S到M的荧光上升以及状态转变变化不太明显,而在不含藻胆体的蓝细菌聚球藻PCC 9511中则不存在。令人惊讶的是,在含有藻胆蛋白棒的滨海红藻(MBIC 11017)中也不存在。所有这些结果表明,从S到M的荧光上升反映了具有由棒和核心部分形成的藻胆体的蓝细菌中从状态2到状态1的转变。我们表明,明显的从S到M的荧光上升可能反映了那些在其他保护机制(如蓝光诱导的非光化学猝灭)效率较低的蓝细菌(如聚球藻PCC 7942)中过剩能量耗散的一种保护机制。本文是名为:可持续性光合作用研究:从自然到人工的特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验