Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy.
Cell Mol Neurobiol. 2012 Aug;32(6):1047-57. doi: 10.1007/s10571-012-9823-5. Epub 2012 Mar 9.
The formation of advanced glycation end products is one of the major factors involved in diabetic neuropathy, aging, and neurodegenerative diseases. Reactive carbonyl compounds, such as methylglyoxal (MG), play a key role in cross-linking to various proteins in the extracellular matrix, especially in neurons, which have a high rate of oxidative metabolism. The MG effect was tested on dorsal root ganglia primary neurons in cultures from adult male Balb/c mice. Lower MG doses contribute to an increased adherence of neurons on their support and an increased glia proliferation, as proved by MTS assay and bright-field microscopy. Time-lapse fluorescence microscopy by Fura-2 was performed for monitoring the relative fluorescence ratio changes (ΔR/R(0)) upon depolarization and immunofluorescence staining for quantifying the degree of neurites extension. The relative change in fluorescence ratio modifies the amplitude and dispersion depending on the subtype of sensory neurons, the medium-sized neurons are more sensitive to MG treatment when compared to small ones. Low MG concentrations (0-150 μM) increase neuronal viability, excitability, and the capacity of neurite extension, while higher concentrations (250-750 μM) are cytotoxic in a dose-dependent manner. In our opinion, MG could be metabolized by the glyoxalase system inside sensory neurons up to a threshold concentration, afterwards disturbing the cell equilibrium. Our study points out that MG has a dual effect concentration dependent on the neuronal viability, excitability, and neurite outgrowth, but only the excitability changes are soma-sized dependent. In conclusion, our data may partially explain the distinct neuronal modifications in various neurodegenerative pathologies.
糖基化终产物的形成是糖尿病性神经病、衰老和神经退行性疾病的主要因素之一。活性羰基化合物,如甲基乙二醛 (MG),在交联到细胞外基质中的各种蛋白质中起着关键作用,特别是在具有高氧化代谢率的神经元中。MG 效应在成年雄性 Balb/c 小鼠背根神经节原代培养的神经元中进行了测试。较低剂量的 MG 有助于神经元在其支持物上的黏附和神经胶质细胞的增殖增加,这通过 MTS 测定和明场显微镜得到了证明。通过 Fura-2 进行延时荧光显微镜检查,以监测去极化时相对荧光强度比变化 (ΔR/R(0)),并用免疫荧光染色定量测量神经突延伸的程度。荧光强度比的相对变化会根据感觉神经元的亚型改变幅度和分散度,与小神经元相比,中型神经元对 MG 处理更为敏感。低浓度 MG(0-150μM)可增加神经元活力、兴奋性和神经突延伸能力,而高浓度 MG(250-750μM)则呈剂量依赖性细胞毒性。在我们看来,MG 可以被感觉神经元内的甘油醛酶系统代谢到一个阈值浓度,然后扰乱细胞平衡。我们的研究表明,MG 具有浓度依赖性的双重作用,对神经元活力、兴奋性和神经突生长有影响,但只有兴奋性变化与体大小有关。总之,我们的数据可以部分解释各种神经退行性病变中不同神经元的改变。