Suppr超能文献

运动训练后间歇性跛行患者骨骼肌中血管内皮生长因子-A 的血管生成和抗血管生成形式的改变。

Alteration in angiogenic and anti-angiogenic forms of vascular endothelial growth factor-A in skeletal muscle of patients with intermittent claudication following exercise training.

机构信息

Division of Cardiology, Duke University Medical Center, Durham, NC, USA.

出版信息

Vasc Med. 2012 Apr;17(2):94-100. doi: 10.1177/1358863X11436334. Epub 2012 Mar 8.

Abstract

The aims of this study were twofold: (1) to identify whether peripheral artery disease (PAD) patients had increased muscle concentration of angiogenic VEGF-A, anti-angiogenic VEGF₁₆₅b or VEGF receptor 1 (VEGF-R1) when compared with control subjects, and (2) to evaluate whether exercise training in PAD patients was associated with changes in muscle concentration of VEGF-A, VEGF₁₆₅b or VEGF-R1. At baseline, 22 PAD and 30 control subjects underwent gastrocnemius muscle biopsy. Twelve PAD patients were treated with supervised exercise training (SET) and underwent muscle biopsy after 3 weeks and 12 weeks of training and had sufficient tissue to measure VEGF-A, VEGF₁₆₅b and VEGF-R1 concentrations in skeletal muscle lysates by ELISA. Muscle concentrations of VEGF-A and VEGF₁₆₅b were similar in PAD patients versus controls at baseline. At both time points after the start of SET, VEGF-A levels decreased and there was a trend towards increased VEGF₁₆₅b concentrations. At baseline, VEGF-R1 concentrations were lower in PAD patients when compared with controls but did not change after SET. Skeletal muscle concentrations of VEGF-A are not different in PAD patients when compared with controls at baseline. SET is associated with a significant reduction in VEGF-A levels and a trend towards increased VEGF₁₆₅b levels. These somewhat unexpected findings suggest that further investigation into the mechanism of vascular responses to exercise training in PAD patients is warranted.

摘要

本研究的目的有两个

(1)与对照组相比,确定外周动脉疾病(PAD)患者的肌肉中是否存在更多的血管生成 VEGF-A、抗血管生成 VEGF₁₆₅b 或血管内皮生长因子受体 1(VEGF-R1);(2)评估 PAD 患者的运动训练是否与肌肉中 VEGF-A、VEGF₁₆₅b 或 VEGF-R1 的浓度变化有关。在基线时,22 名 PAD 患者和 30 名对照组接受了腓肠肌活检。12 名 PAD 患者接受了监督运动训练(SET),并在训练 3 周和 12 周后进行了肌肉活检,有足够的组织通过 ELISA 测量骨骼肌裂解物中的 VEGF-A、VEGF₁₆₅b 和 VEGF-R1 浓度。在基线时,PAD 患者的 VEGF-A 和 VEGF₁₆₅b 肌肉浓度与对照组相似。在 SET 开始后的两个时间点,VEGF-A 水平降低,而 VEGF₁₆₅b 浓度有升高的趋势。在基线时,与对照组相比,PAD 患者的 VEGF-R1 浓度较低,但 SET 后没有变化。与对照组相比,PAD 患者的骨骼肌 VEGF-A 浓度在基线时没有差异。SET 与 VEGF-A 水平显著降低以及 VEGF₁₆₅b 水平升高的趋势相关。这些有些出乎意料的发现表明,有必要进一步研究 PAD 患者血管对运动训练的反应机制。

相似文献

2
Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease.
J Appl Physiol (1985). 2013 Dec;115(12):1777-87. doi: 10.1152/japplphysiol.00979.2013. Epub 2013 Oct 24.
4
Near infrared spectroscopy-guided exercise training for claudication in peripheral arterial disease.
Eur J Prev Cardiol. 2019 Mar;26(5):471-480. doi: 10.1177/2047487318795192. Epub 2018 Aug 28.
5
Skeletal muscle capillary density is related to anaerobic threshold and claudication in peripheral artery disease.
Vasc Med. 2020 Oct;25(5):411-418. doi: 10.1177/1358863X20945794. Epub 2020 Aug 25.
6
Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742-8. doi: 10.1161/ATVBAHA.111.230441.
7
Antiangiogenic VEGFb Regulates Macrophage Polarization via S100A8/S100A9 in Peripheral Artery Disease.
Circulation. 2019 Jan 8;139(2):226-242. doi: 10.1161/CIRCULATIONAHA.118.034165.
8
The effect of supervised exercise therapy for intermittent claudication on lower limb lean mass.
J Vasc Surg. 2016 Dec;64(6):1763-1769. doi: 10.1016/j.jvs.2016.06.099. Epub 2016 Sep 12.
9
10
Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease.
J Appl Physiol (1985). 2011 Jul;111(1):81-6. doi: 10.1152/japplphysiol.00141.2011. Epub 2011 Apr 21.

引用本文的文献

1
Glucosamine-Mediated Hexosamine Biosynthesis Pathway Activation Uses ATF4 to Promote "Exercise-Like" Angiogenesis and Perfusion Recovery in PAD.
Circulation. 2024 Nov 19;150(21):1702-1719. doi: 10.1161/CIRCULATIONAHA.124.069580. Epub 2024 Sep 10.
2
Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice.
Am Heart J Plus. 2024 May 8;42:100400. doi: 10.1016/j.ahjo.2024.100400. eCollection 2024 Jun.
3
HIF1A promotes miR-210/miR-424 transcription to modulate the angiogenesis in HUVECs and HDMECs via sFLT1 under hypoxic stress.
Mol Cell Biochem. 2022 Aug;477(8):2107-2119. doi: 10.1007/s11010-022-04428-x. Epub 2022 Apr 29.
6
Skeletal Muscle Pathology in Peripheral Artery Disease: A Brief Review.
Arterioscler Thromb Vasc Biol. 2020 Nov;40(11):2577-2585. doi: 10.1161/ATVBAHA.120.313831. Epub 2020 Sep 17.
7
Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking Performance in Peripheral Artery Disease.
J Am Heart Assoc. 2020 May 18;9(10):e015929. doi: 10.1161/JAHA.118.015929. Epub 2020 May 9.
8
Sex-related differences in self-care behaviors of adults with type 2 diabetes mellitus.
Endocrine. 2020 Feb;67(2):354-362. doi: 10.1007/s12020-020-02189-5. Epub 2020 Jan 11.
9
VASCULAR-1 and VASCULAR-2 as a New Potential Angiogenesis and Endothelial Dysfunction Markers in Peripheral Arterial Disease.
Clin Appl Thromb Hemost. 2019 Jan-Dec;25:1076029619877440. doi: 10.1177/1076029619877440.
10
Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling.
Compr Physiol. 2019 Jun 12;9(3):1213-1247. doi: 10.1002/cphy.c180026.

本文引用的文献

1
Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742-8. doi: 10.1161/ATVBAHA.111.230441.
2
The VEGF165b "ICE-o-form" puts a chill on the VEGF story.
Circ Res. 2011 Jul 22;109(3):246-7. doi: 10.1161/CIRCRESAHA.111.249953.
4
Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease.
J Appl Physiol (1985). 2011 Jul;111(1):81-6. doi: 10.1152/japplphysiol.00141.2011. Epub 2011 Apr 21.
5
Assessment of functional status and quality of life in claudication.
J Vasc Surg. 2011 May;53(5):1410-21. doi: 10.1016/j.jvs.2010.11.092. Epub 2011 Feb 18.
6
The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle.
J Physiol. 2010 Oct 1;588(Pt 19):3833-45. doi: 10.1113/jphysiol.2010.190439.
7
VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2174-91. doi: 10.1152/ajpheart.00365.2009. Epub 2010 Apr 9.
10
Exercise in patients with intermittent claudication elicits signs of inflammation and angiogenesis.
Eur J Vasc Endovasc Surg. 2009 Dec;38(6):689-96. doi: 10.1016/j.ejvs.2009.08.005. Epub 2009 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验