School of Plant Biology, University of Western Australia, Crawley, Perth 6009, Australia.
New Phytol. 2012 Mar;193(4):882-9. doi: 10.1111/j.1469-8137.2011.04022.x.
Size is one of the most important axes of variation among plants. As such, plant biologists have long searched for unifying principles that can explain how matter and energy flux and organ partitioning scale with plant size. Several recent models have proposed a universal biophysical basis for numerous scaling phenomena in plants based on vascular network geometry. Here, we review statistical analyses of several large-scale plant datasets that demonstrate that a true hallmark of plant form variability is systematic covariation among traits. This covariation is constrained by allometries that combine and trade off with one another, rather than any single universal allometric scaling exponent for a trait or suite of traits. Further, we show that covariation can be successfully modeled using network approaches that allow for species-specific designs in plants and geometric approaches that constrain relationships among economic traits in leaves. Finally, we report large-scale efforts utilizing semi-automated software tools that quantify physical networks and can inform our attempts to link vascular network structure to plant form and function. Collectively, this work highlights how the linking of morphology, biomass partitioning and the structure of physical distribution networks can improve our empirical and theoretical understanding of important drivers of plant functional diversity.
大小是植物变异的最重要轴之一。因此,植物生物学家长期以来一直在寻找能够解释物质和能量通量以及器官分配如何随植物大小缩放的统一原则。最近的几个模型基于血管网络几何形状提出了植物中许多缩放现象的通用生物物理基础。在这里,我们回顾了对几个大规模植物数据集的统计分析,这些分析表明,植物形态变异性的真正标志是特征之间的系统协变。这种协变受到结合和相互权衡的异速关系的限制,而不是特征或特征套件的任何单一通用异速标度指数。此外,我们表明,可以使用网络方法成功地对协变进行建模,该方法允许植物具有特定于物种的设计,并且可以使用几何方法约束叶片中经济特征之间的关系。最后,我们报告了利用半自动软件工具量化物理网络的大规模工作,这些工具可以为我们将血管网络结构与植物形态和功能联系起来的尝试提供信息。总的来说,这项工作强调了将形态学、生物量分配和物理分布网络的结构联系起来如何提高我们对植物功能多样性重要驱动因素的经验和理论理解。