De Paëpe Gaël
Service de Chimie Inorganique et Biologique, UMR-E CEA/UJF-Grenoble, Institut Nanosciences et Cryogénie, France.
Annu Rev Phys Chem. 2012;63:661-84. doi: 10.1146/annurev-physchem-032511-143726. Epub 2012 Feb 7.
Solid-state nuclear magnetic resonance (SSNMR) magic angle spinning (MAS) can be used to record high-resolution data dominated by site-specific information. Although MAS introduces high resolution by attenuating the anisotropic broadening, it also suppresses the nuclear dipole-dipole distance information that is the source of most structural data in the spectra. Such information can be reintroduced coherently and thus selectively by the application of a carefully chosen sequence of radiofrequency pulses, an approach that was introduced 20 years ago and is referred to as dipolar recoupling. This review presents the establishment of recoupling techniques in SSNMR and recalls the major steps achieved by the community throughout the last two decades. This review also presents emerging techniques and their corresponding new concepts. Finally, we present some recent developments based on second-order recoupling mechanisms and discuss their implications regarding dipolar truncation and the possibility to extract structural constraints in uniformly labeled systems.
固态核磁共振(SSNMR)魔角旋转(MAS)可用于记录以位点特异性信息为主导的高分辨率数据。尽管MAS通过减弱各向异性展宽引入了高分辨率,但它也抑制了核偶极 - 偶极距离信息,而该信息是光谱中大多数结构数据的来源。通过应用精心选择的射频脉冲序列,可以相干地且因此有选择地重新引入此类信息,这种方法是20年前引入的,被称为偶极再耦合。本综述介绍了SSNMR中再耦合技术的建立,并回顾了过去二十年来该领域取得的主要进展。本综述还介绍了新兴技术及其相应的新概念。最后,我们展示了基于二阶再耦合机制的一些最新进展,并讨论了它们对偶极截断的影响以及在均匀标记系统中提取结构约束的可能性。