Suppr超能文献

天冬氨酸残基 D3 对 Cx50 缝隙连接通道的跨膜电压门控和单位电导具有关键性决定作用。

Aspartic acid residue D3 critically determines Cx50 gap junction channel transjunctional voltage-dependent gating and unitary conductance.

机构信息

Graduate Program of Neuroscience, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.

出版信息

Biophys J. 2012 Mar 7;102(5):1022-31. doi: 10.1016/j.bpj.2012.02.008. Epub 2012 Mar 6.

Abstract

Previous studies have suggested that the aspartic acid residue (D) at the third position is critical in determining the voltage polarity of fast V(j)-gating of Cx50 channels. To test whether another negatively charged residue (a glutamic acid residue, E) could fulfill the role of the D3 residue, we generated the mutant Cx50D3E. V(j)-dependent gating properties of this mutant channel were characterized by double-patch-clamp recordings in N2A cells. Macroscopically, the D3E substitution reduced the residual conductance (G(min)) to near zero and outwardly shifted the half-inactivation voltage (V(0)), which is a result of both a reduced aggregate gating charge (z) and a reduced free-energy difference between the open and closed states. Single Cx50D3E gap junction channels showed reduced unitary conductance (γ(j)) of the main open state, reduced open dwell time at ±40 mV, and absence of a long-lived substate. In contrast, a G8E substitution tested to compare the effects of the E residue at the third and eighth positions did not modify the V(j)-dependent gating profile or γ(j). In summary, this study is the first that we know of to suggest that the D3 residue plays an essential role, in addition to serving as a negative-charge provider, as a critical determinant of the V(j)-dependent gating sensitivity, open-closed stability, and unitary conductance of Cx50 gap junction channels.

摘要

先前的研究表明,第 3 位的天冬氨酸残基(D)在决定 Cx50 通道快速 V(j)-门控的电压极性方面起着关键作用。为了测试另一个带负电荷的残基(谷氨酸残基,E)是否可以替代 D3 残基的作用,我们生成了突变体 Cx50D3E。通过在 N2A 细胞中的双膜片钳记录来表征该突变通道的 V(j)-门控特性。宏观上,D3E 取代将残余电导(G(min))降低到接近零,并向外移动半失活电压(V(0)),这是由于聚集门控电荷(z)减少和开放与关闭状态之间的自由能差减少所致。单个 Cx50D3E 缝隙连接通道显示主要开放状态的单位电导(γ(j))降低,在 ±40 mV 时的开放停留时间减少,并且不存在长寿命亚基。相比之下,测试了第 3 位和第 8 位的 E 残基的 G8E 取代并未改变 V(j)-门控轮廓或 γ(j)。总之,这项研究首次表明,D3 残基除了作为负电荷供体之外,还作为 Cx50 缝隙连接通道 V(j)-门控敏感性、开放-关闭稳定性和单位电导的关键决定因素发挥着重要作用。

相似文献

8
Electrical properties of gap junction hemichannels identified in transfected HeLa cells.
Pflugers Arch. 2000 Jul;440(3):366-79. doi: 10.1007/s004240000294.
9
Properties of gap junction channels formed by Cx46 alone and in combination with Cx50.
Biophys J. 2000 Oct;79(4):1954-66. doi: 10.1016/S0006-3495(00)76444-7.
10
Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels.
Biophys J. 2005 Mar;88(3):1725-39. doi: 10.1529/biophysj.104.054023. Epub 2004 Dec 13.

引用本文的文献

1
Calcium induced N-terminal gating and pore collapse in connexin-46/50 gap junctions.
bioRxiv. 2025 Feb 14:2025.02.12.637955. doi: 10.1101/2025.02.12.637955.
2
Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures.
Biology (Basel). 2024 Apr 26;13(5):298. doi: 10.3390/biology13050298.
5
Structural determinants underlying permeant discrimination of the Cx43 hemichannel.
J Biol Chem. 2019 Nov 8;294(45):16789-16803. doi: 10.1074/jbc.RA119.007732. Epub 2019 Sep 25.
6
Structure of native lens connexin 46/50 intercellular channels by cryo-EM.
Nature. 2018 Dec;564(7736):372-377. doi: 10.1038/s41586-018-0786-7. Epub 2018 Dec 12.
7
Gap junction structure: unraveled, but not fully revealed.
F1000Res. 2017 Apr 26;6:568. doi: 10.12688/f1000research.10490.1. eCollection 2017.
8
Specificity of the connexin W3/4 locus for functional gap junction formation.
Channels (Austin). 2016 Nov;10(6):453-65. doi: 10.1080/19336950.2016.1200775. Epub 2016 Jun 15.
10
Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46.
Am J Physiol Cell Physiol. 2013 May 1;304(9):C823-32. doi: 10.1152/ajpcell.00344.2012. Epub 2013 Jan 9.

本文引用的文献

2
Structure of the connexin 26 gap junction channel at 3.5 A resolution.
Nature. 2009 Apr 2;458(7238):597-602. doi: 10.1038/nature07869.
4
Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel.
J Physiol. 2008 May 15;586(10):2445-61. doi: 10.1113/jphysiol.2008.150805. Epub 2008 Mar 27.
5
Molecular basis of voltage dependence of connexin channels: an integrative appraisal.
Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):66-106. doi: 10.1016/j.pbiomolbio.2007.03.007. Epub 2007 Mar 19.
6
Differential potency of dominant negative connexin43 mutants in oculodentodigital dysplasia.
J Biol Chem. 2007 Jun 29;282(26):19190-202. doi: 10.1074/jbc.M609653200. Epub 2007 Apr 9.
7
Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB).
J Pharmacol Exp Ther. 2006 Dec;319(3):1452-8. doi: 10.1124/jpet.106.112045. Epub 2006 Sep 19.
8
Role of the N-terminus in permeability of chicken connexin45.6 gap junctional channels.
J Physiol. 2006 Nov 1;576(Pt 3):787-99. doi: 10.1113/jphysiol.2006.113837. Epub 2006 Aug 24.
9
Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels.
Biophys J. 2006 Sep 15;91(6):2142-54. doi: 10.1529/biophysj.106.082859. Epub 2006 Jun 23.
10
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验