Suppr超能文献

通过连接蛋白32 N端的负电荷取代逆转间隙连接的门控极性。

Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32.

作者信息

Purnick P E, Oh S, Abrams C K, Verselis V K, Bargiello T A

机构信息

Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Biophys J. 2000 Nov;79(5):2403-15. doi: 10.1016/S0006-3495(00)76485-X.

Abstract

Intercellular channels formed by connexins (gap junctions) are sensitive to the application of transjunctional voltage (V(j)), to which they gate by the separate actions of their serially arranged hemichannels (Harris, A. L., D. C. Spray, and M. V. L. Bennett. 1981. J. Gen. Physiol. 77:95-117). Single channel studies of both intercellular and conductive hemichannels have demonstrated the existence of two separate gating mechanisms, termed "V(j)-gating" and "loop gating" (Trexler, E. B., M. V. L. Bennett, T. A. Bargiello, and V. K. Verselis. 1996. Proc. Natl. Acad. Sci. U.S.A. 93:5836-5841). In Cx32 hemichannels, V(j)-gating occurs at negative V(j) (Oh, S., J. B. Rubin, M. V. L. Bennett, V. K. Verselis, and T. A. Bargiello. 1999. J. Gen. Physiol. 114:339-364; Oh, S., C. K. Abrams, V. K. Verselis, and T. A. Bargiello. 2000. J. Gen. Physiol. 116:13-31). A negative charge substitution at the second amino acid position in the N-terminus reverses the polarity of V(j)-gating of Cx32 hemichannels (Verselis, V. K., C. S. Ginter, and T. A. Bargiello. 1994. Nature. 368:348-351;. J. Gen. Physiol. 116:13-31). We report that placement of a negative charge at the 5th, 8th, 9th, or 10th position can reverse the polarity of Cx32 hemichannel V(j)-gating. We conclude that the 1st through 10th amino acid residues lie within the transjunctional electric field and within the channel pore, as in this position they could sense changes in V(j) and be largely insensitive to changes in absolute membrane potential (V(m)). Conductive hemichannels formed by Cx32Cx43E1 containing a negatively charged residue at either the 8th or 10th position display bi-polar V(j)-gating; that is, the open probability of hemichannels formed by these connexins is reduced at both positive and negative potentials and is maximal at intermediate voltages. In contrast, Cx32Cx43E1 hemichannels with negative charges at either the 2nd or 5th positions are uni-polar, closing only at positive V(j). The simplest interpretation of these data is that the Cx32 hemichannel can adopt at least two different open conformations. The 1st-5th residues are located within the electric field in all open channel conformations, while the 8th and 10th residues lie within the electric field in one conformation and outside the electric field in the other conformation.

摘要

由连接蛋白形成的细胞间通道(间隙连接)对跨连接电压(V(j))的施加敏感,它们通过其串联排列的半通道的单独作用对其进行门控(哈里斯,A. L.,D. C. 斯普雷,和 M. V. L. 贝内特。1981 年。《普通生理学杂志》77:95 - 117)。对细胞间和传导性半通道的单通道研究已经证明存在两种独立的门控机制,称为“V(j) - 门控”和“环门控”(特雷克斯勒,E. B.,M. V. L. 贝内特,T. A. 巴尔吉洛,和 V. K. 韦尔塞利斯。1996 年。《美国国家科学院院刊》93:5836 - 5841)。在 Cx32 半通道中,V(j) - 门控发生在负的 V(j) 时(吴,S.,J. B. 鲁宾,M. V. L. 贝内特,V. K. 韦尔塞利斯,和 T. A. 巴尔吉洛。1999 年。《普通生理学杂志》114:339 - 364;吴,S.,C. K. 艾布拉姆斯,V. K. 韦尔塞利斯,和 T. A. 巴尔吉洛。2000 年。《普通生理学杂志》116:13 - 31)。在 N 端第二个氨基酸位置的负电荷取代会反转 Cx32 半通道 V(j) - 门控的极性(韦尔塞利斯,V. K.,C. S. 金特,和 T. A. 巴尔吉洛。1994 年。《自然》。368:348 - 351;《普通生理学杂志》116:13 - 31)。我们报告在第 5、8、9 或 10 位放置负电荷可以反转 Cx32 半通道 V(j) - 门控的极性。我们得出结论,第 1 至 10 个氨基酸残基位于跨连接电场内和通道孔内,因为在这个位置它们可以感知 V(j) 的变化并且对绝对膜电位(V(m))的变化基本不敏感。由在第 8 或 10 位含有负电荷残基的 Cx32Cx43E1 形成的传导性半通道表现出双极 V(j) - 门控;也就是说,由这些连接蛋白形成的半通道的开放概率在正电位和负电位时都会降低,而在中间电压时最大。相比之下,在第 2 或 5 位带有负电荷的 Cx32Cx43E1 半通道是单极的,仅在正的 V(j) 时关闭。对这些数据最简单的解释是 Cx32 半通道可以采用至少两种不同的开放构象。在所有开放通道构象中,第 1 - 5 个残基位于电场内,而第 8 和 10 个残基在一种构象中位于电场内,在另一种构象中位于电场外。

相似文献

3
Determinants of gating polarity of a connexin 32 hemichannel.
Biophys J. 2004 Aug;87(2):912-28. doi: 10.1529/biophysj.103.038448.
4
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
5
Opposite voltage gating polarities of two closely related connexins.
Nature. 1994 Mar 24;368(6469):348-51. doi: 10.1038/368348a0.
7
Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels.
Biophys J. 1999 Dec;77(6):2968-87. doi: 10.1016/S0006-3495(99)77129-8.
8
Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions.
Biophys J. 1999 Sep;77(3):1374-83. doi: 10.1016/S0006-3495(99)76986-9.
9
Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32.
Biophys J. 1992 Apr;62(1):183-93; discussion 193-5. doi: 10.1016/S0006-3495(92)81804-0.
10
Voltage gating and permeation in a gap junction hemichannel.
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5836-41. doi: 10.1073/pnas.93.12.5836.

引用本文的文献

1
Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures.
Biology (Basel). 2024 Apr 26;13(5):298. doi: 10.3390/biology13050298.
2
Connexin-Containing Vesicles for Drug Delivery.
AAPS J. 2024 Jan 24;26(1):20. doi: 10.1208/s12248-024-00889-8.
4
Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels.
Sci Adv. 2023 Sep;9(35):eadh4890. doi: 10.1126/sciadv.adh4890. Epub 2023 Aug 30.
6
The Amino Terminal Domain and Modulation of Connexin36 Gap Junction Channels by Intracellular Magnesium Ions.
Front Physiol. 2022 Feb 21;13:839223. doi: 10.3389/fphys.2022.839223. eCollection 2022.
8
On the molecular nature of large-pore channels.
J Mol Biol. 2021 Aug 20;433(17):166994. doi: 10.1016/j.jmb.2021.166994. Epub 2021 Apr 16.
9
The Complex and Critical Role of Glycine 12 (G12) in Beta-Connexins of Human Skin.
Int J Mol Sci. 2021 Mar 5;22(5):2615. doi: 10.3390/ijms22052615.

本文引用的文献

2
Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels.
Biophys J. 1999 Dec;77(6):2968-87. doi: 10.1016/S0006-3495(99)77129-8.
5
Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive.
Biophys J. 1997 May;72(5):2137-42. doi: 10.1016/S0006-3495(97)78856-8.
6
A chimeric connexin forming gap junction hemichannels.
Pflugers Arch. 1997 Apr;433(6):773-9. doi: 10.1007/s004240050344.
7
Size and selectivity of gap junction channels formed from different connexins.
J Bioenerg Biomembr. 1996 Aug;28(4):327-37. doi: 10.1007/BF02110109.
9
Voltage gating and permeation in a gap junction hemichannel.
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5836-41. doi: 10.1073/pnas.93.12.5836.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验