Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
Biophys J. 2012 Mar 7;102(5):1163-73. doi: 10.1016/j.bpj.2011.11.4025. Epub 2012 Mar 6.
Among the advantages of the single-molecule approach when used to study biomolecular structural dynamics and interaction is its ability to distinguish between and independently observe minor subpopulations. In a single-molecule Förster resonance energy transfer (FRET) and alternating laser excitation diffusion experiment, the various populations are apparent in the resultant histograms. However, because histograms are calculated based on the per-burst mean FRET and stoichiometry ratio and not on the internal photon distribution, much of the acquired information is lost, thereby reducing the capabilities of the method. Here we suggest what to our knowledge is a novel statistical analysis tool that significantly enhances these capabilities, and we use it to identify and isolate static and dynamic subpopulations. Based on a kernel density estimator and a proper photon distribution analysis, for each individual burst, we calculate scores that reflect properties of interest. Specifically, we determine the FRET efficiency and brightness ratio distributions and use them to reveal 1), the underlying structure of a two-state DNA-hairpin and a DNA hairpin that is bound to DNA origami; 2), a minor doubly labeled dsDNA subpopulation concealed in a larger singly labeled dsDNA; and 3), functioning DNA origami motors concealed within a larger subpopulation of defective motors. Altogether, these findings demonstrate the usefulness of the proposed approach. The method was developed and tested using simulations, its rationality is described, and a computer algorithm is provided.
在研究生物分子结构动力学和相互作用时,使用单分子方法的一个优势是它能够区分和独立观察次要亚群。在单分子Förster 共振能量转移 (FRET) 和交替激光激发扩散实验中,各种群体在得到的直方图中明显可见。然而,由于直方图是基于每个爆发的平均 FRET 和化学计量比计算的,而不是基于内部光子分布,因此会丢失大量获取的信息,从而降低了该方法的能力。在这里,我们提出了一种据我们所知的新颖的统计分析工具,它显著增强了这些能力,并使用它来识别和分离静态和动态亚群。基于核密度估计器和适当的光子分布分析,我们为每个单独的爆发计算反映感兴趣属性的分数。具体来说,我们确定 FRET 效率和亮度比分布,并使用它们来揭示 1)双链 DNA 发夹和与 DNA 折纸结合的 DNA 发夹的基本结构;2)隐藏在较大单标记双链 DNA 中的较小双标记 dsDNA 亚群;以及 3)隐藏在较大缺陷型马达亚群中的功能型 DNA 折纸马达。总之,这些发现证明了所提出方法的有用性。该方法是使用模拟开发和测试的,描述了其合理性,并提供了计算机算法。