Suppr超能文献

氧化蛋白折叠和未折叠蛋白反应在酵母的内质网和细胞质中引起不同的氧化还原调节。

Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast.

机构信息

Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria.

出版信息

Free Radic Biol Med. 2012 May 1;52(9):2000-12. doi: 10.1016/j.freeradbiomed.2012.02.048. Epub 2012 Mar 8.

Abstract

Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.

摘要

氧化蛋白折叠的能力超过了细胞分泌机制,从而诱导未折叠蛋白反应(UPR)。持续的内质网(ER)应激会导致细胞应激和疾病,如阿尔茨海默病、帕金森病和糖尿病等。目前认为,内质网的氧化还原状态通过使用谷胱甘肽作为主要氧化还原缓冲剂来最佳地平衡二硫键的形成,并且 UPR 会导致该细胞器的还原。然而,氧化蛋白折叠在内质网中的直接作用尚未从 UPR 调节中分离出来。为了测量酵母模式生物毕赤酵母中内质网和细胞质的体内氧化还原条件,我们将氧化还原敏感的 roGFP 变体靶向到相应的细胞器。由此,我们清楚地证明,UPR 的诱导除了内质网还原之外,还会导致细胞质的还原。同样,在没有 UPR 诱导的情况下,内质网中氧化蛋白折叠会导致细胞质呈现更还原的氧化还原状态,而内质网则没有观察到这种情况,这是通过过表达富含二硫键的分泌蛋白(如猪胰蛋白酶原或蛋白二硫键异构酶(PDI1)和内质网氧化酶(ERO1)的基因来证明的。细胞质的还原似乎不是由谷胱甘肽还原酶(GLR1)引起的,并且不能通过过表达细胞质谷胱甘肽过氧化物酶(GPX1)来补偿。GPX1 和 PDI1 的过表达氧化了内质网并增加了正确折叠蛋白质的分泌,这表明氧化蛋白折叠本身会被更氧化的内质网增强,并通过更还原的细胞质来平衡。由于这些菌株的总谷胱甘肽浓度没有显著变化,但 GSH 与 GSSG 的比例发生了改变,因此推测内质网和细胞质的谷胱甘肽池之间存在运输或氧化还原信号转导。这些数据清楚地表明,蛋白质折叠和 ER 应激对内质网细胞质氧化还原平衡有严重影响,这可能是折叠相关疾病发展过程中的一个重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验