Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
Mol Phylogenet Evol. 2012 Jun;63(3):834-47. doi: 10.1016/j.ympev.2012.02.020. Epub 2012 Mar 3.
The construction of a stable phylogeny for the Cestoda, indicating the interrelationships of recognised orders and other major lineages, has proceeded iteratively since the group first received attention from phylogenetic systematists. Molecular analyses using nuclear ribosomal RNA gene fragments from the small (ssrDNA) and large (lsrDNA) subunits have been used to test competing evolutionary scenarios based on morphological data but could not arbitrate between some key conflicting hypotheses. To the ribosomal data, we have added a contiguous fragment of mitochondrial (mt) genome data (mtDNA) of partial nad1-trnN-trnP-trnI-trnK-nad3-trnS-trnW-cox1-trnT-rrnL-trnC-partial rrnS, spanning 4034-4447 bp, where new data for this region were generated for 18 species. Bayesian analysis of mtDNA and rDNA as nucleotides, and where appropriate as amino acids, demonstrated that these two classes of genes provide complementary signal across the phylogeny. In all analyses, except when using mt amino acids only, the Gyrocotylidea is sister group to all other Cestoda (Nephroposticophora), and Amphilinidea forms the sister group to the Eucestoda. However, an earliest-diverging position of Amphilinidea is strongly supported in the mt amino acid analysis. Amphilinidea exhibit a unique tRNA arrangement (nad1-trnI-trnL2-trnP-trnK-trnV-trnA-trnN-nad3), whereas Gyrocotylidea shares that of the derived lineages, providing additional evidence of the uniqueness of amphilinid genes and genomes. The addition of mtDNA to the rDNA genes supported the Caryophyllidea as the sister group to (Spathebothriidea+remaining Eucestoda), a hypothesis consistently supported by morphology. This relationship suggests a history of step-wise evolutionary transitions from simple monozoic, unsegmented tapeworms to the more familiar polyzoic, externally segmented (strobilate) forms. All our data partitions recovered Haplobothriidea as the sister group to Diphyllobothriidae. The sister-group relationship between Diphyllidea and Trypanorhyncha, as previously established using rDNA, is not supported by the mt data, although it is supported by the combined mt and rDNA analysis. With regards to the more derived taxa, in all except the mt amino acid analysis, the following topology is supported: (Bothriocephalidea (Litobothriidea (Lecanicephalidea (Rhinebothriidea (Tetraphyllidea, (Acanthobothrium, Proteocephalidea), (Nippotaeniidea, Mesocestoididae, Tetrabothriidea, Cyclophyllidea)))))), where the Tetraphyllidea are paraphyletic. Evidence from the mt data provides strong (nucleotides) to moderate (amino acids) support for Tetraphyllidea forming a group to the inclusion of Proteocephalidea, with the latter consistently forming the sister group to Acanthobothrium. The interrelationships among Nippotaeniidea, Mesocestoididae, Tetrabothriidea and Cyclophyllidea remain ambiguous and require further systematic attention. Mitochondrial and nuclear rDNA data provide conflicting signal for certain parts of the cestode tree. In some cases mt data offer results in line with morphological evidence, such as the interrelationships of the early divergent lineages. Also, Tetraphyllidea, although remaining paraphyletic with the inclusion of the Proteocephalidea, does not include the most derived cestodes; a result which has consistently been obtained with rDNA.
绦虫的稳定系统发育的构建,表明了公认的目和其他主要谱系之间的相互关系,自从系统发育分类学家首次关注该群组以来,已经逐步进行。使用小(ssrDNA)和大(lsrDNA)亚基的核核糖体 RNA 基因片段进行的分子分析已经用于测试基于形态数据的竞争进化情景,但不能在一些关键冲突假设之间进行仲裁。对于核糖体数据,我们添加了线粒体(mt)基因组数据(mtDNA)的连续片段,包括部分 nad1-trnN-trnP-trnI-trnK-nad3-trnS-trnW-cox1-trnT-rrnL-trnC-部分 rrnS,跨越 4034-4447bp,其中为该区域生成了 18 个新物种的数据。mtDNA 和 rDNA 的贝叶斯分析作为核苷酸,并且在适当的情况下作为氨基酸,表明这两类基因在整个系统发育中提供互补信号。在所有分析中,除了使用 mt 氨基酸外,Gyrocotylidea 是所有其他绦虫(Nephroposticophora)的姐妹群,而 Amphilinidea 是 Eucestoda 的姐妹群。然而,在 mt 氨基酸分析中,强烈支持 Amphilinidea 的最早分化位置。Amphilinidea 表现出独特的 tRNA 排列(nad1-trnI-trnL2-trnP-trnK-trnV-trnA-trnN-nad3),而 Gyrocotylidea 共享衍生谱系的 tRNA,为 amphilinid 基因和基因组的独特性提供了额外的证据。将 mtDNA 添加到 rDNA 基因中支持 Caryophyllidea 是(Spathebothriidea+剩余的 Eucestoda)的姐妹群,这一假设一直得到形态学的支持。这种关系表明,从简单的单生、无节片的绦虫到更熟悉的多生、外部分段(节片)形式的进化是逐步过渡的。我们所有的数据分区都将 Haplobothriidea 恢复为 Diphyllobothriidae 的姐妹群。尽管在 mt 数据中不支持 Diphyllidea 和 Trypanorhyncha 之间的姐妹群关系,但在 mt 和 rDNA 联合分析中支持该关系,这是使用 rDNA 先前建立的。关于更衍生的分类群,除了 mt 氨基酸分析外,以下拓扑结构得到支持:(Bothriocephalidea(Litobothriidea(Lecanicephalidea(Rhinebothriidea(Tetraphyllidea,(Acanthobothrium,Proteocephalidea)))),其中 Tetraphyllidea 是并系的。来自 mt 数据的证据为 Tetraphyllidea 形成一个包含 Proteocephalidea 的群组提供了强有力的(核苷酸)到中等的(氨基酸)支持,后者始终与 Acanthobothrium 形成姐妹群。Nippotaeniidea、Mesocestoididae、Tetrabothriidea 和 Cyclophyllidea 之间的相互关系仍然模棱两可,需要进一步的系统关注。线粒体和核 rDNA 数据为绦虫树的某些部分提供了相互冲突的信号。在某些情况下,mt 数据提供的结果与形态证据一致,例如早期分化谱系的相互关系。此外,尽管 Tetraphyllidea 包括 Proteocephalidea,但仍然是并系的,不包括最衍生的绦虫;这是 rDNA 一直得到的结果。