Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Chembiochem. 2012 Mar 19;13(5):691-9. doi: 10.1002/cbic.201100714. Epub 2012 Mar 8.
Proteases have niche applications in diagnostic kits that use cell lysis and thereby require high resistance towards chaotropic salts and detergents, such as guanidinium chloride (GdmCl) and sodium dodecylsulfate (SDS). Subtilisin E, a well-studied serine protease, was selected to be re-engineered by directed evolution into a "chaophilic" protease that would be resistance to GdmCl and SDS, for application in diagnostic kits. In three iterative rounds of directed evolution, variant SeSaM1-5 (S62I/A153V/G166S/I205V) was generated, with improved activity (330 %) and increased half life in 1 M GdmCl (<2 min to 4.7 h) or in 0.5 % SDS (<2 min to 2.7 h). Saturation mutagenesis at each site in the wild-type subtilisin E revealed that positions 62 and 166 were mainly responsible for increased activity and stability. A double mutant, M2 (S62I/G166M), generated by combination of the best single mutations showed significantly improved kinetic constants; in 2 M GdmCl the K(m) value decreased (29-fold) from 7.31 to 0.25 mM, and the k(cat) values increased (fourfold) from 15 to 61 s(-1) . The catalytic efficiency, k(cat)/K(m), improved dramatically (GdmCl: 247 mM(-1)s(-1) (118-fold); SDS, 179 mM(-1)s(-1) (13-fold)). In addition, the SeSaM1-5 variant showed higher stability in 2.0 % SDS when compared to the wild-type (t(1/2) 54.8 min (>27-fold)). Finally, molecular dynamics simulations of the wild-type subtilisin E showed that Gdm(+) ions could directly interact with active site residues, thereby probably limiting access of the substrate to the catalytic centre.
蛋白酶在使用细胞溶解的诊断试剂盒中有特定的应用,因此需要对变性盐和去污剂(如盐酸胍(GdmCl)和十二烷基硫酸钠(SDS))具有高抗性。枯草杆菌蛋白酶 E 是一种经过充分研究的丝氨酸蛋白酶,被选择通过定向进化来重新设计成一种对 GdmCl 和 SDS 具有抗性的“嗜热”蛋白酶,用于诊断试剂盒。在三轮迭代的定向进化中,产生了变体 SeSaM1-5(S62I/A153V/G166S/I205V),其活性提高了 330%,在 1 M GdmCl 或 0.5% SDS 中的半衰期延长(<2 分钟至 4.7 小时或<2 分钟至 2.7 小时)。在野生型枯草杆菌蛋白酶 E 的每个位置进行饱和诱变表明,位置 62 和 166 主要负责提高活性和稳定性。通过组合最佳的单点突变生成的双突变体 M2(S62I/G166M)显示出显著改善的动力学常数;在 2 M GdmCl 中,K(m) 值降低(29 倍)至 0.25 mM,k(cat) 值增加(4 倍)至 61 s(-1)。催化效率 k(cat)/K(m) 显著提高(GdmCl:247 mM(-1)s(-1)(118 倍);SDS,179 mM(-1)s(-1)(13 倍))。此外,与野生型相比,SeSaM1-5 变体在 2.0% SDS 中的稳定性更高(t(1/2)54.8 min(>27 倍))。最后,对野生型枯草杆菌蛋白酶 E 的分子动力学模拟表明,Gdm(+) 离子可以直接与活性位点残基相互作用,从而可能限制底物进入催化中心。