Suppr超能文献

可变剪接介导拟南芥生物钟对温度变化的响应。

Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.

机构信息

Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland.

出版信息

Plant Cell. 2012 Mar;24(3):961-81. doi: 10.1105/tpc.111.093948. Epub 2012 Mar 9.

Abstract

Alternative splicing plays crucial roles by influencing the diversity of the transcriptome and proteome and regulating protein structure/function and gene expression. It is widespread in plants, and alteration of the levels of splicing factors leads to a wide variety of growth and developmental phenotypes. The circadian clock is a complex piece of cellular machinery that can regulate physiology and behavior to anticipate predictable environmental changes on a revolving planet. We have performed a system-wide analysis of alternative splicing in clock components in Arabidopsis thaliana plants acclimated to different steady state temperatures or undergoing temperature transitions. This revealed extensive alternative splicing in clock genes and dynamic changes in alternatively spliced transcripts. Several of these changes, notably those affecting the circadian clock genes late elongated hypocotyl (LHY) and pseudo response regulator7, are temperature-dependent and contribute markedly to functionally important changes in clock gene expression in temperature transitions by producing nonfunctional transcripts and/or inducing nonsense-mediated decay. Temperature effects on alternative splicing contribute to a decline in LHY transcript abundance on cooling, but LHY promoter strength is not affected. We propose that temperature-associated alternative splicing is an additional mechanism involved in the operation and regulation of the plant circadian clock.

摘要

可变剪接通过影响转录组和蛋白质组的多样性以及调节蛋白质结构/功能和基因表达,起着至关重要的作用。它在植物中广泛存在,剪接因子水平的改变导致了各种各样的生长和发育表型。生物钟是一种复杂的细胞机制,可以调节生理和行为,以预测旋转地球上可预测的环境变化。我们对适应不同稳态温度或经历温度转变的拟南芥植物中的生物钟成分的可变剪接进行了系统分析。这揭示了时钟基因中的广泛可变剪接和可变剪接转录本的动态变化。其中一些变化,特别是那些影响生物钟基因晚期伸长拟南芥(LHY)和拟假基因响应调节剂 7 的变化,是温度依赖性的,并通过产生无功能转录本和/或诱导无意义介导的衰变,对温度转变中时钟基因表达的功能重要变化做出显著贡献。温度对可变剪接的影响导致 LHY 转录本丰度在冷却时下降,但 LHY 启动子强度不受影响。我们提出,与温度相关的可变剪接是植物生物钟运行和调节的另一个机制。

相似文献

1
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.
Plant Cell. 2012 Mar;24(3):961-81. doi: 10.1105/tpc.111.093948. Epub 2012 Mar 9.
5
Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis.
J Exp Bot. 2014 May;65(8):1973-80. doi: 10.1093/jxb/eru085. Epub 2014 Mar 6.
6
SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis.
Plant Cell. 2012 Aug;24(8):3278-95. doi: 10.1105/tpc.112.100081. Epub 2012 Aug 31.
9
CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis.
Plant Signal Behav. 2012 Sep 1;7(9):1194-6. doi: 10.4161/psb.21300. Epub 2012 Aug 17.
10
CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis.
Plant Physiol. 2009 Jun;150(2):834-43. doi: 10.1104/pp.108.133272. Epub 2009 Feb 13.

引用本文的文献

3
Regulation of alternative splicing by CBF-mediated protein condensation in plant response to cold stress.
Nat Plants. 2025 Mar;11(3):505-517. doi: 10.1038/s41477-025-01933-x. Epub 2025 Mar 5.
4
Circadian- and Light-Driven Rhythmicity of Interconnected Gene Networks in Olive Tree.
Int J Mol Sci. 2025 Jan 3;26(1):361. doi: 10.3390/ijms26010361.
5
A Compensated Clock: Temperature and Nutritional Compensation Mechanisms Across Circadian Systems.
Bioessays. 2025 Mar;47(3):e202400211. doi: 10.1002/bies.202400211. Epub 2024 Dec 18.
6
Alternative splicing of transcript mediates the response of circadian clocks to temperature changes.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2410680121. doi: 10.1073/pnas.2410680121. Epub 2024 Dec 4.
7
Alternative splicing of the -like gene is associated with endodormancy in mulberry.
For Res (Fayettev). 2024 Sep 4;4:e029. doi: 10.48130/forres-0024-0027. eCollection 2024.

本文引用的文献

1
Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis.
Nucleic Acids Res. 2012 Mar;40(6):2454-69. doi: 10.1093/nar/gkr932. Epub 2011 Nov 29.
2
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
Nature. 2011 Jul 13;475(7356):398-402. doi: 10.1038/nature10182.
3
Circadian rhythms persist without transcription in a eukaryote.
Nature. 2011 Jan 27;469(7331):554-8. doi: 10.1038/nature09654.
4
Post-transcriptional control of circadian rhythms.
J Cell Sci. 2011 Feb 1;124(Pt 3):311-20. doi: 10.1242/jcs.065771.
5
Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis.
Curr Biol. 2011 Jan 25;21(2):120-5. doi: 10.1016/j.cub.2010.12.013. Epub 2011 Jan 13.
6
LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock.
Curr Biol. 2011 Jan 25;21(2):126-33. doi: 10.1016/j.cub.2010.12.021. Epub 2011 Jan 13.
7
Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing.
Curr Biol. 2010 Dec 21;20(24):R1086-92. doi: 10.1016/j.cub.2010.10.035.
8
The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock.
Plant Physiol. 2011 Feb;155(2):906-15. doi: 10.1104/pp.110.167015. Epub 2010 Dec 7.
9
Jumonji domain protein JMJD5 functions in both the plant and human circadian systems.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21623-8. doi: 10.1073/pnas.1014204108. Epub 2010 Nov 29.
10
The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation.
Plant Cell. 2010 Nov;22(11):3650-61. doi: 10.1105/tpc.110.079087. Epub 2010 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验