Xidian University, Xi’an 710071, China.
IEEE Trans Image Process. 2012 Jul;21(7):3194-205. doi: 10.1109/TIP.2012.2190080. Epub 2012 Mar 9.
Until now, neighbor-embedding-based (NE) algorithms for super-resolution (SR) have carried out two independent processes to synthesize high-resolution (HR) image patches. In the first process, neighbor search is performed using the Euclidean distance metric, and in the second process, the optimal weights are determined by solving a constrained least squares problem. However, the separate processes are not optimal. In this paper, we propose a sparse neighbor selection scheme for SR reconstruction. We first predetermine a larger number of neighbors as potential candidates and develop an extended Robust-SL0 algorithm to simultaneously find the neighbors and to solve the reconstruction weights. Recognizing that the k-nearest neighbor (k-NN) for reconstruction should have similar local geometric structures based on clustering, we employ a local statistical feature, namely histograms of oriented gradients (HoG) of low-resolution (LR) image patches, to perform such clustering. By conveying local structural information of HoG in the synthesis stage, the k-NN of each LR input patch is adaptively chosen from their associated subset, which significantly improves the speed of synthesizing the HR image while preserving the quality of reconstruction. Experimental results suggest that the proposed method can achieve competitive SR quality compared with other state-of-the-art baselines.
到目前为止,基于邻域嵌入(NE)的超分辨率(SR)算法已经执行了两个独立的过程来合成高分辨率(HR)图像块。在第一个过程中,使用欧几里得距离度量进行邻域搜索,在第二个过程中,通过求解约束最小二乘问题确定最优权重。然而,这些独立的过程并不是最优的。在本文中,我们提出了一种用于 SR 重建的稀疏邻域选择方案。我们首先预先确定了更多的邻域作为潜在的候选者,并开发了一种扩展的 Robust-SL0 算法来同时找到邻域并求解重建权重。我们认识到,基于聚类,重构的 k-最近邻(k-NN)应该具有相似的局部几何结构,因此我们使用局部统计特征,即低分辨率(LR)图像块的方向梯度直方图(HoG),来执行这种聚类。通过在合成阶段传递 HoG 的局部结构信息,每个 LR 输入块的 k-NN 可以自适应地从其相关子集选择,这显著提高了合成 HR 图像的速度,同时保持了重建的质量。实验结果表明,与其他最先进的基线相比,所提出的方法可以实现具有竞争力的 SR 质量。