Suppr超能文献

Cadisc™-L 与天然腰椎间盘在轴向压缩和矢状弯曲下的体外生物力学比较。

An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion.

机构信息

Institute of Biomechanics, School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Eur Spine J. 2012 Jun;21 Suppl 5(Suppl 5):S612-7. doi: 10.1007/s00586-012-2249-4. Epub 2012 Mar 13.

Abstract

INTRODUCTION

The elastomeric, monobloc disc prosthesis (Cadisc™-L, Ranier Technology, Cambridge, UK) aims to preserve biomechanics of an implanted spinal motion segment.

STUDY DESIGN

This study presents the findings of an in vitro investigation on the effect of implantation of Cadisc™-L. Compressive stiffness, flexion stiffness at 10, 20, 30 and 40 Nm and the instant-axis-of-rotation (IAR) loci are compared before and after implantation of a MC-10 mm-6° Cadisc™-L.

METHODS

Fresh frozen human monosegmental lumbar spines (n = 8) were prepared, potted and tested in an environmentally controlled chamber to simulate in vivo conditions. Specimens were preconditioned by loading to 500 N for 30 min. Compressive stiffness of the specimen was determined by applying pure compression of 1 kN at 250 N/s via a loading roller positioned at the central loading axis (CLA). The roller was then offset 12.5 mm anterior of the CLA and the loading regime repeated to test specimens in flexion. Bending moments were calculated from the applied load and corresponding flexion angle. The IAR locus was tracked by a motion-tracking camera.

RESULTS

Compressive stiffness was reduced by 50 % (p = 0.0005), flexion stiffness was not statistically significantly reduced (40 % reduction, p > 0.05). IAR locus maintained a 'horizontal figure of eight' characteristic. Change in the locus width in the AP plane of 6.4 mm (p = 0.06) and height in the SI plane of 1.3 mm (p = 0.44) were not significant. The centroid was displaced 4.44 mm (p = 0.0019) and 5.44 mm (p = 0.025) at 3° and 6° flexion, respectively.

CONCLUSIONS

Implantation of Cadisc™-L caused a reduction in axial stiffness, but maintained disc height and flexion stiffness. IAR loci remained mobile without large displacement of the centroid from the intact spine position.

摘要

简介

弹性整体式盘状假体(Cadisc ™ -L,雷尼尔技术,英国剑桥)旨在保留植入脊柱运动节段的生物力学特性。

研究设计

本研究介绍了 Cadisc ™ -L 植入物的体外研究结果。在植入 MC-10mm-6°Cadisc ™ -L 前后,比较了压缩刚度、10、20、30 和 40 Nm 时的弯曲刚度以及瞬时旋转轴(IAR)轨迹。

方法

准备 8 个新鲜冷冻的单节段人类腰椎标本,盆栽并在环境控制室内进行测试,以模拟体内条件。标本通过在中央加载轴(CLA)上施加 1 kN 的纯压缩,以 250 N/s 的速度加载 30 min 来预加载。通过位于 CLA 前 12.5mm 的加载辊对试件施加纯压缩,以 1 kN 的力施加 250 N/s 的速度,从而确定试件的压缩刚度。然后,将加载器偏移 12.5mm,重复加载制度以测试试件的弯曲。从施加的载荷和相应的弯曲角度计算弯矩。通过运动跟踪相机跟踪 IAR 轨迹。

结果

压缩刚度降低了 50%(p=0.0005),弯曲刚度没有统计学意义的降低(降低 40%,p>0.05)。IAR 轨迹保持“水平八字形”特征。AP 平面上的轨迹宽度变化 6.4mm(p=0.06)和 SI 平面上的高度变化 1.3mm(p=0.44)不显著。中心点在 3°和 6°弯曲时分别偏移 4.44mm(p=0.0019)和 5.44mm(p=0.025)。

结论

Cadisc ™ -L 的植入导致轴向刚度降低,但保持了椎间盘高度和弯曲刚度。IAR 轨迹仍然活跃,中心点没有从完整脊柱位置发生大的位移。

相似文献

1
An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion.
Eur Spine J. 2012 Jun;21 Suppl 5(Suppl 5):S612-7. doi: 10.1007/s00586-012-2249-4. Epub 2012 Mar 13.
2
Kinematic evaluation of one- and two-level Maverick lumbar total disc replacement caudal to a long thoracolumbar spinal fusion.
Eur Spine J. 2012 Jun;21 Suppl 5(Suppl 5):S599-611. doi: 10.1007/s00586-012-2301-4. Epub 2012 Apr 25.
3
Primary and coupled motions after cervical total disc replacement using a compressible six-degree-of-freedom prosthesis.
Eur Spine J. 2012 Jun;21 Suppl 5(Suppl 5):S618-29. doi: 10.1007/s00586-010-1575-7. Epub 2010 Sep 24.
4
Resect or not to resect: the role of posterior longitudinal ligament in lumbar total disc replacement.
Eur Spine J. 2012 Jun;21 Suppl 5(Suppl 5):S592-8. doi: 10.1007/s00586-009-1193-4. Epub 2009 Oct 31.
6
Dynamic biomechanical examination of the lumbar spine with implanted total disc replacement using a pendulum testing system.
Spine (Phila Pa 1976). 2012 Nov 1;37(23):E1438-43. doi: 10.1097/BRS.0b013e31826b39d7.
7
Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement.
Proc Inst Mech Eng H. 2015 Nov;229(11):769-77. doi: 10.1177/0954411915610601.
8
Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis.
Eur Spine J. 2012 Jun;21 Suppl 5(Suppl 5):S663-74. doi: 10.1007/s00586-010-1382-1. Epub 2010 Apr 2.

引用本文的文献

1
ADDISC lumbar disc prosthesis: Analytical and FEA testing of novel implants.
Heliyon. 2023 Feb 4;9(2):e13540. doi: 10.1016/j.heliyon.2023.e13540. eCollection 2023 Feb.
2
Biomechanical consequences of cement discoplasty: An study on thoraco-lumbar human spines.
Front Bioeng Biotechnol. 2022 Dec 2;10:1040695. doi: 10.3389/fbioe.2022.1040695. eCollection 2022.
3
We Need to Talk about Lumbar Total Disc Replacement.
Int J Spine Surg. 2018 Aug 3;12(2):201-240. doi: 10.14444/5029. eCollection 2018 Apr.
4
Disc herniation caused by a viscoelastic nucleus after total lumbar disc replacement-a case report.
J Spine Surg. 2018 Jun;4(2):478-482. doi: 10.21037/jss.2018.05.21.
5
Biomechanical effects of semi-constrained integrated artificial discs on zygapophysial joints of implanted lumbar segments.
Exp Ther Med. 2013 Dec;6(6):1423-1430. doi: 10.3892/etm.2013.1313. Epub 2013 Sep 26.

本文引用的文献

1
A robotic testing facility for the measurement of the mechanics of spinal joints.
Proc Inst Mech Eng H. 2007 Apr;221(3):221-7. doi: 10.1243/09544119JEIM175.
2
Disc degeneration in low back pain: a 17-year follow-up study using magnetic resonance imaging.
Spine (Phila Pa 1976). 2007 Mar 15;32(6):681-4. doi: 10.1097/01.brs.0000257523.38337.96.
3
Polyethylene wear debris and long-term clinical failure of the Charité disc prosthesis: a study of 4 patients.
Spine (Phila Pa 1976). 2007 Jan 15;32(2):223-9. doi: 10.1097/01.brs.0000251370.56327.c6.
4
Polyethylene wear and rim fracture in total disc arthroplasty.
Spine J. 2007 Jan-Feb;7(1):12-21. doi: 10.1016/j.spinee.2006.05.012. Epub 2006 Dec 6.
5
Disc arthroplasty design influences intervertebral kinematics and facet forces.
Spine J. 2006 May-Jun;6(3):258-66. doi: 10.1016/j.spinee.2005.07.004.
7
Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle.
J Biomech. 2007;40(2):271-80. doi: 10.1016/j.jbiomech.2006.01.007. Epub 2006 Mar 9.
8
Biomechanical studies of an artificial disc implant in the human cadaveric spine.
J Neurosurg Spine. 2005 Mar;2(3):339-43. doi: 10.3171/spi.2005.2.3.0339.
9
The relationship between disc degeneration and flexibility of the lumbar spine.
Spine J. 2001 Jan-Feb;1(1):47-56. doi: 10.1016/s1529-9430(01)00006-7.
10
Lumbar disc degeneration and sagittal flexibility.
J Spinal Disord. 1996 Oct;9(5):418-24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验