Department of Electrical and Computer Engineering, Texas Tech University, Box 43102, Lubbock, TX 79409-3102, USA.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Jul-Aug;9(4):1230-44. doi: 10.1109/TCBB.2012.37.
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model.
在系统生物学中,已经提出了许多能够对基因表达的细粒度动态进行建模的详细遗传调控网络模型。然而,实验数据的类型和采样频率的限制常常阻碍了详细模型的参数估计。此外,详细模型的模拟所涉及的高计算复杂度也限制了其使用。在这种情况下,通常会应用捕获网络粗粒度行为的降阶模型。在本文中,我们分析了一种逼近详细随机主方程模型的降阶马尔可夫链模型的动力学。利用保持随机主方程模型聚合稳态概率分布的约简映射,我们提供了马尔可夫链瞬态分布与随机主方程模型的瞬态聚合分布之间的偏差的界。