Hemberg Martin, Barahona Mauricio
Department of Bioengineering and Institute for Mathematical Sciences, Imperial College London, London, United Kingdom.
Biophys J. 2007 Jul 15;93(2):401-10. doi: 10.1529/biophysj.106.099390. Epub 2007 Apr 27.
We present a perfect sampling algorithm that can be applied to the master equation of gene regulatory networks. The method recasts Gillespie's stochastic simulation algorithm (SSA) in the light of Markov chain Monte Carlo methods and combines it with the dominated coupling from the past (DCFTP) algorithm to provide guaranteed sampling from the stationary distribution. We show how the DCFTP-SSA can be generically applied to genetic networks with feedback formed by the interconnection of linear enzymatic reactions and nonlinear Monod- and Hill-type elements. We establish rigorous bounds on the error and convergence of the DCFTP-SSA, as compared to the standard SSA, through a set of increasingly complex examples. Once the building blocks for gene regulatory networks have been introduced, the algorithm is applied to study properly averaged dynamic properties of two experimentally relevant genetic networks: the toggle switch, a two-dimensional bistable system; and the repressilator, a six-dimensional transcriptional oscillator.
我们提出了一种可应用于基因调控网络主方程的完美抽样算法。该方法根据马尔可夫链蒙特卡罗方法对吉莱斯皮随机模拟算法(SSA)进行了重新表述,并将其与过去主导耦合(DCFTP)算法相结合,以确保从平稳分布中进行抽样。我们展示了DCFTP - SSA如何能够一般地应用于由线性酶促反应以及非线性莫诺德型和希尔型元件相互连接形成的具有反馈的遗传网络。通过一系列越来越复杂的例子,我们建立了与标准SSA相比,DCFTP - SSA误差和收敛性的严格界限。一旦引入了基因调控网络的构建模块,该算法就被应用于研究两个实验相关遗传网络的适当平均动态特性:双稳开关,一个二维双稳态系统;以及抑制振荡子,一个六维转录振荡器。