Suppr超能文献

贝叶斯分析中孟德尔随机化研究的参数化和先验选择。

On the choice of parameterisation and priors for the Bayesian analyses of Mendelian randomisation studies.

机构信息

Department of Health Sciences, University of Leicester, Leicester, U.K..

出版信息

Stat Med. 2012 Jun 30;31(14):1483-501. doi: 10.1002/sim.4499. Epub 2012 Mar 13.

Abstract

Mendelian randomisation is a form of instrumental variable analysis that estimates the causal effect of an intermediate phenotype or exposure on an outcome or disease in the presence of unobserved confounding, using a genetic variant as the instrument. A Bayesian approach allows current knowledge to be incorporated into the analysis in the form of informative prior distributions, and the unobserved confounder can be modelled explicitly. We consider Bayesian methods for Mendelian randomisation in the case where all relationships are linear and there are no interactions. A 'full' model in which the unobserved confounder is included explicitly is not completely identifiable, although the causal parameter can be estimated. We compare inferences from this general but non-identified model with a reduced parameter model that is identifiable. We show that, theoretically, additional information about the causal parameter can be obtained by using the non-identifiable full model, rather than the identifiable reduced model, but that this is advantageous only when realistically informative priors are used and when the instrument is weak or the sample size is small. Furthermore, we consider the impact of using 'vague' versus 'informative' priors.

摘要

孟德尔随机化是一种工具变量分析形式,它使用遗传变异作为工具,在存在未观察到的混杂因素的情况下,估计中间表型或暴露对结局或疾病的因果效应。贝叶斯方法允许将当前的知识以信息先验分布的形式纳入分析中,并且可以明确地对未观察到的混杂因素进行建模。我们考虑了在所有关系均为线性且不存在交互作用的情况下,孟德尔随机化的贝叶斯方法。尽管可以估计因果参数,但包含明确未观察到混杂因素的“完整”模型并不是完全可识别的。我们比较了这种一般但不可识别的模型与可识别的简化参数模型的推断结果。我们表明,从理论上讲,通过使用不可识别的完整模型而不是可识别的简化模型,可以获得有关因果参数的更多信息,但只有在使用现实中信息丰富的先验和工具较弱或样本量较小时,这才是有利的。此外,我们还考虑了使用“模糊”先验和“信息丰富”先验的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验