Suppr超能文献

通过贝叶斯孟德尔随机化方法推断因果关系的方向并估计其效应。

Inferring the direction of a causal link and estimating its effect via a Bayesian Mendelian randomization approach.

机构信息

Data Science Department, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.

出版信息

Stat Methods Med Res. 2020 Apr;29(4):1081-1111. doi: 10.1177/0962280219851817. Epub 2019 May 30.

Abstract

The use of genetic variants as instrumental variables - an approach known as Mendelian randomization - is a popular epidemiological method for estimating the causal effect of an exposure (phenotype, biomarker, risk factor) on a disease or health-related outcome from observational data. Instrumental variables must satisfy strong, often untestable assumptions, which means that finding good genetic instruments among a large list of potential candidates is challenging. This difficulty is compounded by the fact that many genetic variants influence more than one phenotype through different causal pathways, a phenomenon called horizontal pleiotropy. This leads to errors not only in estimating the magnitude of the causal effect but also in inferring the direction of the putative causal link. In this paper, we propose a Bayesian approach called BayesMR that is a generalization of the Mendelian randomization technique in which we allow for pleiotropic effects and, crucially, for the possibility of reverse causation. The output of the method is a posterior distribution over the target causal effect, which provides an immediate and easily interpretable measure of the uncertainty in the estimation. More importantly, we use Bayesian model averaging to determine how much more likely the inferred direction is relative to the reverse direction.

摘要

利用遗传变异作为工具变量(一种称为孟德尔随机化的方法)是一种流行的流行病学方法,可用于从观察性数据中估计暴露(表型、生物标志物、风险因素)对疾病或健康相关结果的因果效应。工具变量必须满足严格的、通常未经检验的假设,这意味着在大量潜在候选者中找到良好的遗传工具是具有挑战性的。由于许多遗传变异通过不同的因果途径影响不止一种表型,这种现象称为水平多效性,这使得不仅在估计因果效应的大小方面存在误差,而且在推断所谓的因果关系的方向方面也存在误差。在本文中,我们提出了一种称为 BayesMR 的贝叶斯方法,它是孟德尔随机化技术的推广,其中我们允许存在多效性效应,并且关键是允许存在反向因果关系的可能性。该方法的输出是目标因果效应的后验分布,它提供了对估计不确定性的直接且易于解释的度量。更重要的是,我们使用贝叶斯模型平均来确定推断方向相对于反向方向的可能性有多大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84b8/7221461/c8a95a9c930a/10.1177_0962280219851817-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验